| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import pytest
- from paddlex_hpi.models import SegPredictor
- from tests.models.base import BaseTestPredictor
- from paddlex.inference.results import SegResult
- MODEL_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_model.zip"
- INPUT_DATA_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_input.png"
- EXPECTED_RESULT_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/seg_result.json"
- class TestSegPredictor(BaseTestPredictor):
- @property
- def model_url(self):
- return MODEL_URL
- @property
- def input_data_url(self):
- return INPUT_DATA_URL
- @property
- def expected_result_url(self):
- return EXPECTED_RESULT_URL
- @property
- def expected_result_with_args_url(self):
- return EXPECTED_RESULT_URL
- @property
- def predictor_cls(self):
- return SegPredictor
- @property
- def should_test_with_args(self):
- return True
- def _predict_with_predictor_args(
- self, model_path, input_data_path, device, expected_result_with_args
- ):
- with pytest.raises(TypeError):
- predictor = self.predictor_cls(model_path, device=device, target_size=400)
- def _predict_with_predict_args(
- self,
- model_path,
- input_data_path,
- device,
- expected_result,
- expected_result_with_args,
- ):
- predictor = self.predictor_cls(model_path, device=device)
- with pytest.raises(TypeError):
- output = predictor(str(input_data_path), target_size=400)
- output = list(output)
- def _check_result(self, result, expected_result):
- assert isinstance(result, SegResult)
- assert "input_img" in result
- result.pop("input_img")
- assert set(result) == set(expected_result)
- pred = result["pred"]
- expected_pred = np.array(expected_result["pred"], dtype=np.int32)
- assert pred.shape == expected_pred.shape
- assert (pred != expected_pred).sum() / pred.size < 0.01
|