predictor.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ....utils import logging
  15. from ....utils.func_register import FuncRegister
  16. from ....modules.formula_recognition.model_list import MODELS
  17. from ...common.batch_sampler import ImageBatchSampler
  18. from ...common.reader import ReadImage
  19. from ..common import (
  20. StaticInfer,
  21. )
  22. from ..base import BasicPredictor
  23. from .processors import (
  24. MinMaxResize,
  25. LatexTestTransform,
  26. LatexImageFormat,
  27. LaTeXOCRDecode,
  28. NormalizeImage,
  29. ToBatch,
  30. UniMERNetImgDecode,
  31. UniMERNetDecode,
  32. UniMERNetTestTransform,
  33. UniMERNetImageFormat,
  34. )
  35. from .result import FormulaRecResult
  36. class FormulaRecPredictor(BasicPredictor):
  37. entities = MODELS
  38. _FUNC_MAP = {}
  39. register = FuncRegister(_FUNC_MAP)
  40. def __init__(self, *args, **kwargs):
  41. super().__init__(*args, **kwargs)
  42. self.pre_tfs, self.infer, self.post_op = self._build()
  43. def _build_batch_sampler(self):
  44. return ImageBatchSampler()
  45. def _get_result_class(self):
  46. return FormulaRecResult
  47. def _build(self):
  48. pre_tfs = {"Read": ReadImage(format="RGB")}
  49. for cfg in self.config["PreProcess"]["transform_ops"]:
  50. tf_key = list(cfg.keys())[0]
  51. assert tf_key in self._FUNC_MAP
  52. func = self._FUNC_MAP[tf_key]
  53. args = cfg.get(tf_key, {})
  54. name, op = func(self, **args) if args else func(self)
  55. if op:
  56. pre_tfs[name] = op
  57. pre_tfs["ToBatch"] = ToBatch()
  58. infer = StaticInfer(
  59. model_dir=self.model_dir,
  60. model_prefix=self.MODEL_FILE_PREFIX,
  61. option=self.pp_option,
  62. )
  63. post_op = self.build_postprocess(**self.config["PostProcess"])
  64. return pre_tfs, infer, post_op
  65. def process(self, batch_data):
  66. batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances)
  67. if self.model_name in ("LaTeX_OCR_rec"):
  68. batch_imgs = self.pre_tfs["MinMaxResize"](imgs=batch_raw_imgs)
  69. batch_imgs = self.pre_tfs["LatexTestTransform"](imgs=batch_imgs)
  70. batch_imgs = self.pre_tfs["NormalizeImage"](imgs=batch_imgs)
  71. batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
  72. elif self.model_name in ("UniMERNet"):
  73. batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
  74. batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
  75. batch_imgs = self.pre_tfs["UniMERNetImageFormat"](imgs=batch_imgs)
  76. elif self.model_name in ("PP-FormulaNet-S", "PP-FormulaNet-L"):
  77. batch_imgs = self.pre_tfs["UniMERNetImgDecode"](imgs=batch_raw_imgs)
  78. batch_imgs = self.pre_tfs["UniMERNetTestTransform"](imgs=batch_imgs)
  79. batch_imgs = self.pre_tfs["LatexImageFormat"](imgs=batch_imgs)
  80. x = self.pre_tfs["ToBatch"](imgs=batch_imgs)
  81. batch_preds = self.infer(x=x)
  82. batch_preds = [p.reshape([-1]) for p in batch_preds[0]]
  83. rec_formula = self.post_op(batch_preds)
  84. return {
  85. "input_path": batch_data.input_paths,
  86. "page_index": batch_data.page_indexes,
  87. "input_img": batch_raw_imgs,
  88. "rec_formula": rec_formula,
  89. }
  90. @register("DecodeImage")
  91. def build_readimg(self, channel_first, img_mode):
  92. assert channel_first == False
  93. return "Read", ReadImage(format=img_mode)
  94. @register("MinMaxResize")
  95. def build_min_max_resize(self, min_dimensions, max_dimensions):
  96. return "MinMaxResize", MinMaxResize(
  97. min_dimensions=min_dimensions, max_dimensions=max_dimensions
  98. )
  99. @register("LatexTestTransform")
  100. def build_latex_test_transform(
  101. self,
  102. ):
  103. return "LatexTestTransform", LatexTestTransform()
  104. @register("NormalizeImage")
  105. def build_normalize(self, mean, std, order="chw"):
  106. return "NormalizeImage", NormalizeImage(mean=mean, std=std, order=order)
  107. @register("LatexImageFormat")
  108. def build_latexocr_imageformat(self):
  109. return "LatexImageFormat", LatexImageFormat()
  110. @register("UniMERNetImgDecode")
  111. def build_unimernet_decode(self, input_size):
  112. return "UniMERNetImgDecode", UniMERNetImgDecode(input_size)
  113. def build_postprocess(self, **kwargs):
  114. if kwargs.get("name") == "LaTeXOCRDecode":
  115. return LaTeXOCRDecode(
  116. character_list=kwargs.get("character_dict"),
  117. )
  118. elif kwargs.get("name") == "UniMERNetDecode":
  119. return UniMERNetDecode(
  120. character_list=kwargs.get("character_dict"),
  121. )
  122. else:
  123. raise Exception()
  124. @register("UniMERNetTestTransform")
  125. def build_unimernet_imageformat(self):
  126. return "UniMERNetTestTransform", UniMERNetTestTransform()
  127. @register("UniMERNetImageFormat")
  128. def build_unimernet_imageformat(self):
  129. return "UniMERNetImageFormat", UniMERNetImageFormat()
  130. @register("UniMERNetLabelEncode")
  131. def foo(self, *args, **kwargs):
  132. return None, None
  133. @register("KeepKeys")
  134. def foo(self, *args, **kwargs):
  135. return None, None