| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/function/pad.h"
- #include <cstdlib>
- #include "ultra_infer/function/eigen.h"
- #include "ultra_infer/utils/utils.h"
- namespace ultra_infer {
- namespace function {
- template <typename T, int Rank> struct PadEigen {
- using Array = std::array<std::pair<int64_t, int64_t>, Rank>;
- using Array32Bit = std::array<std::pair<int, int>, Rank>;
- using InType = Eigen::TensorMap<
- Eigen::Tensor<const T, Rank, Eigen::RowMajor, Eigen::DenseIndex>>;
- using InType32BitIndex =
- Eigen::TensorMap<Eigen::Tensor<const T, Rank, Eigen::RowMajor, int>,
- Eigen::Aligned>;
- using OutType = Eigen::TensorMap<
- Eigen::Tensor<T, Rank, Eigen::RowMajor, Eigen::DenseIndex>>;
- using OutType32BitIndex =
- Eigen::TensorMap<Eigen::Tensor<T, Rank, Eigen::RowMajor, int>,
- Eigen::Aligned>;
- static void Eval(const Eigen::DefaultDevice &dev, OutType out,
- const InType &in, const Array &padding, const T value) {
- out.device(dev) = in.pad(padding, value);
- }
- static void Eval32(const Eigen::DefaultDevice &dev, OutType32BitIndex out,
- const InType32BitIndex &in, const Array32Bit &padding,
- const T value) {
- out.device(dev) = in.pad(padding, value);
- }
- };
- template <typename T, size_t D>
- void PadFunction(const std::vector<int> &pads, const FDTensor &src, T pad_value,
- FDTensor *out) {
- std::array<std::pair<int64_t, int64_t>, D> paddings;
- for (size_t i = 0; i < paddings.size(); ++i) {
- paddings[i].first = pads[i * 2];
- paddings[i].second = pads[i * 2 + 1];
- }
- auto src_tensor = EigenTensor<T, D>::From(src);
- auto out_tensor = EigenTensor<T, D>::From(*out);
- const auto &dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
- PadEigen<T, D>::Eval(dev, out_tensor, src_tensor, paddings, pad_value);
- }
- template <typename T>
- void PaddingFunctor(int rank, const std::vector<int> &pads, T pad_value,
- const FDTensor &src, FDTensor *out) {
- switch (rank) {
- case 1:
- PadFunction<T, 1>(pads, src, pad_value, out);
- break;
- case 2:
- PadFunction<T, 2>(pads, src, pad_value, out);
- break;
- case 3:
- PadFunction<T, 3>(pads, src, pad_value, out);
- break;
- case 4:
- PadFunction<T, 4>(pads, src, pad_value, out);
- break;
- case 5:
- PadFunction<T, 5>(pads, src, pad_value, out);
- break;
- case 6:
- PadFunction<T, 6>(pads, src, pad_value, out);
- break;
- default:
- FDASSERT(
- false,
- "Pad only support tensors with no more than 6 dimensions currently.");
- }
- }
- template <typename T>
- void PadKernel(const FDTensor &x, const std::vector<int> &paddings,
- const T &pad_value, FDTensor *out) {
- std::vector<int64_t> new_shape(x.shape.size());
- for (size_t i = 0; i < x.shape.size(); ++i) {
- new_shape[i] = x.shape[i] + paddings[2 * i] + paddings[2 * i + 1];
- }
- out->Allocate(new_shape, x.dtype);
- PaddingFunctor<T>(x.shape.size(), paddings, pad_value, x, out);
- }
- void Pad(const FDTensor &x, FDTensor *out, const std::vector<int> &pads,
- float value) {
- FDASSERT(pads.size() == x.shape.size() * 2,
- "Size of pads:%zu must be 2 times of rank:%zu.", pads.size(),
- x.shape.size());
- FDTensor out_tmp;
- FD_VISIT_ALL_TYPES(x.dtype, "PadKernel",
- ([&] { PadKernel<data_t>(x, pads, value, &out_tmp); }));
- *out = std::move(out_tmp);
- }
- } // namespace function
- } // namespace ultra_infer
|