| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/function/tile.h"
- #include "ultra_infer/function/eigen.h"
- namespace ultra_infer {
- namespace function {
- template <typename T, int Rank>
- void TileFunctor(const FDTensor &x,
- const std::vector<int64_t> &origin_repeat_times,
- FDTensor *out) {
- auto x_shape = x.Shape();
- auto repeat_times = origin_repeat_times;
- for (size_t i = 0; i < repeat_times.size(); ++i) {
- FDASSERT(repeat_times[i] > 0,
- "All elements of the input 'repeat_times' "
- "for tile op must be positive integers, but "
- "the value received is %d.",
- repeat_times[i]);
- }
- if (repeat_times.size() < x_shape.size()) {
- int diff = x_shape.size() - repeat_times.size();
- repeat_times.insert(repeat_times.begin(), diff, 1);
- } else {
- int diff = repeat_times.size() - x_shape.size();
- x_shape.insert(x_shape.begin(), diff, 1);
- }
- FDASSERT(repeat_times.size() == x_shape.size(),
- "The rank (%d) of the input 'x' and the rank (%d) of the input "
- "'repeat_times' for tile op must match after promotion.",
- x_shape.size(), repeat_times.size());
- if (Rank == 0) {
- // Deep copy
- *out = x;
- return;
- }
- FDTensor out_tmp;
- Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
- for (size_t i = 0; i < repeat_times.size(); ++i) {
- bcast_dims[i] = repeat_times[i];
- }
- std::vector<int64_t> out_shape(x_shape);
- for (size_t i = 0; i < repeat_times.size(); ++i) {
- out_shape[i] *= repeat_times[i];
- }
- out_tmp.Allocate(out_shape, x.Dtype());
- auto eigen_x = EigenTensor<T, Rank>::From(x, x_shape);
- auto eigen_out = EigenTensor<T, Rank>::From(out_tmp, out_shape);
- const auto &dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
- eigen_out.device(dev) = eigen_x.broadcast(bcast_dims);
- *out = std::move(out_tmp);
- }
- template <typename T>
- void TileKernel(const FDTensor &x, const std::vector<int64_t> &repeat_times,
- FDTensor *out) {
- auto rank = x.Shape().size();
- auto repeat_times_size = repeat_times.size();
- rank = (std::max)(rank, repeat_times_size);
- switch (rank) {
- case 0:
- *out = x;
- break;
- case 1:
- TileFunctor<T, 1>(x, repeat_times, out);
- break;
- case 2:
- TileFunctor<T, 2>(x, repeat_times, out);
- break;
- case 3:
- TileFunctor<T, 3>(x, repeat_times, out);
- break;
- case 4:
- TileFunctor<T, 4>(x, repeat_times, out);
- break;
- case 5:
- TileFunctor<T, 5>(x, repeat_times, out);
- break;
- case 6:
- TileFunctor<T, 6>(x, repeat_times, out);
- break;
- }
- }
- void Tile(const FDTensor &x, const std::vector<int64_t> &repeat_times,
- FDTensor *out) {
- FD_VISIT_ALL_TYPES(x.dtype, "TileKernel",
- ([&] { TileKernel<data_t>(x, repeat_times, out); }));
- }
- } // namespace function
- } // namespace ultra_infer
|