| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/function/transpose.h"
- #include "ultra_infer/function/eigen.h"
- #include "ultra_infer/utils/utils.h"
- namespace ultra_infer {
- namespace function {
- template <typename T> struct TransposeNormalKernel {
- void operator()(const FDTensor &in, FDTensor *out,
- const std::vector<int64_t> &axis) {
- const int rank = axis.size();
- auto in_stride = GetStride(in.shape);
- auto out_stride = GetStride(out->shape);
- const T *in_ptr = reinterpret_cast<const T *>(in.Data());
- T *out_ptr = reinterpret_cast<T *>(out->Data());
- auto transpose_helper = [&](int64_t beg, int64_t end) {
- for (int64_t out_idx = beg; out_idx < end; ++out_idx) {
- int64_t in_idx = 0;
- int64_t tmp_idx = out_idx;
- // calculate the input index
- for (int i = 0; i < rank; ++i) {
- const int64_t coordinate = tmp_idx / out_stride[i];
- tmp_idx -= coordinate * out_stride[i];
- in_idx += coordinate * in_stride[axis[i]];
- }
- out_ptr[out_idx] = in_ptr[in_idx];
- }
- };
- transpose_helper(0, out->Numel());
- }
- };
- template <typename T, int Rank> struct TransposeKernelImpl {
- void operator()(const FDTensor &in, FDTensor *out,
- const std::vector<int64_t> &axis) {
- Eigen::array<int, Rank> permute;
- for (int i = 0; i < Rank; i++) {
- permute[i] = axis[i];
- }
- auto &place = *EigenDeviceWrapper::GetInstance()->GetDevice();
- auto eigen_in = EigenTensor<T, Rank>::From(in);
- auto eigen_out = EigenTensor<T, Rank>::From(*out);
- eigen_out.device(place) = eigen_in.shuffle(permute);
- }
- };
- template <typename T>
- void TransposeKernel(const FDTensor &x, FDTensor *out,
- const std::vector<int64_t> &axis) {
- int rank = axis.size();
- switch (rank) {
- case 1:
- TransposeKernelImpl<T, 1> trans1;
- trans1(x, out, axis);
- break;
- case 2:
- TransposeKernelImpl<T, 2> trans2;
- trans2(x, out, axis);
- break;
- case 3:
- TransposeKernelImpl<T, 3> trans3;
- trans3(x, out, axis);
- break;
- case 4:
- TransposeKernelImpl<T, 4> trans4;
- trans4(x, out, axis);
- break;
- default:
- // for rank >= 4 situation
- TransposeNormalKernel<T> trans_normal;
- trans_normal(x, out, axis);
- }
- }
- void Transpose(const FDTensor &x, FDTensor *out,
- const std::vector<int64_t> &dims) {
- size_t dims_size = dims.size();
- FDASSERT(dims_size == x.shape.size(),
- "The input tensor's dimension should be equal to the dims's size. "
- "Expect dims size is %lu, but receive %lu.",
- x.shape.size(), dims_size);
- std::vector<int> count(dims_size, 0);
- for (size_t i = 0; i < dims_size; i++) {
- FDASSERT(dims[i] >= 0,
- "The dims should be greater than or equal to 0, but receive %lld.",
- dims[i]);
- FDASSERT(dims[i] < static_cast<int>(dims_size) && ++count[dims[i]] == 1,
- "Each element of Attribute axis should be a unique value range "
- "from 0 to (dims - 1), where the dims is the axis's size, unique "
- "value means this axis value can appear only once. ");
- }
- std::vector<int64_t> out_dims(dims_size);
- for (size_t i = 0; i < dims_size; i++) {
- out_dims[i] = x.shape[dims[i]];
- }
- // Note(zhoushunjie): The FDTensor out may equal to FDTensor x, so firstly we
- // use out_temp to get the transposed result, then we move the out_temp to
- // out.
- FDTensor out_temp;
- out_temp.Allocate(out_dims, x.dtype);
- FD_VISIT_ALL_TYPES(x.dtype, "TransposeKernel",
- ([&] { TransposeKernel<data_t>(x, &out_temp, dims); }));
- *out = std::move(out_temp);
- }
- } // namespace function
- } // namespace ultra_infer
|