| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- // The namespace should be
- // ultra_infer::vision::classification (ultra_infer::vision::${task})
- namespace ultra_infer {
- namespace vision {
- /** \brief All object classification model APIs are defined inside this
- * namespace
- *
- */
- namespace classification {
- /*! @brief Torchvision ResNet series model
- */
- class ULTRAINFER_DECL ResNet : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./resnet50.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- ResNet(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- virtual std::string ModelName() const { return "ResNet"; }
- /** \brief Predict for the input "im", the result will be saved in "result".
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result Saving the inference result.
- * \param[in] topk The length of return values, e.g., if topk==2, the result
- * will include the 2 most possible class label for input image.
- */
- virtual bool Predict(cv::Mat *im, ClassifyResult *result, int topk = 1);
- /*! @brief
- Argument for image preprocessing step, tuple of (width, height), decide the
- target size after resize, default size = {224, 224}
- */
- std::vector<int> size;
- /*! @brief
- Mean parameters for normalize, size should be the the same as channels,
- default mean_vals = {0.485f, 0.456f, 0.406f}
- */
- std::vector<float> mean_vals;
- /*! @brief
- Std parameters for normalize, size should be the the same as channels, default
- std_vals = {0.229f, 0.224f, 0.225f}
- */
- std::vector<float> std_vals;
- private:
- /*! @brief Initialize for ResNet model, assign values to the global variables
- * and call InitRuntime()
- */
- bool Initialize();
- /// PreProcessing for the input "mat", the result will be saved in "outputs".
- bool Preprocess(Mat *mat, FDTensor *outputs);
- /*! @brief PostProcessing for the input "infer_result", the result will be
- * saved in "result".
- */
- bool Postprocess(FDTensor &infer_result, ClassifyResult *result,
- int topk = 1);
- };
- } // namespace classification
- } // namespace vision
- } // namespace ultra_infer
|