| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/contrib/fastestdet/postprocessor.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- FastestDetPostprocessor::FastestDetPostprocessor() {
- conf_threshold_ = 0.65;
- nms_threshold_ = 0.45;
- }
- float FastestDetPostprocessor::Sigmoid(float x) {
- return 1.0f / (1.0f + exp(-x));
- }
- float FastestDetPostprocessor::Tanh(float x) {
- return 2.0f / (1.0f + exp(-2 * x)) - 1;
- }
- bool FastestDetPostprocessor::Run(
- const std::vector<FDTensor> &tensors, std::vector<DetectionResult> *results,
- const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
- int batch = 1;
- results->resize(batch);
- for (size_t bs = 0; bs < batch; ++bs) {
- (*results)[bs].Clear();
- // output (1,85,22,22) CHW
- const float *output =
- reinterpret_cast<const float *>(tensors[0].Data()) +
- bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3];
- int output_h = tensors[0].shape[2]; // out map height
- int output_w = tensors[0].shape[3]; // out map weight
- auto iter_out = ims_info[bs].find("output_shape");
- auto iter_ipt = ims_info[bs].find("input_shape");
- FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
- "Cannot find input_shape or output_shape from im_info.");
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- // handle output boxes from out map
- for (int h = 0; h < output_h; h++) {
- for (int w = 0; w < output_w; w++) {
- // object score
- int obj_score_index = (h * output_w) + w;
- float obj_score = output[obj_score_index];
- // find max class
- int category = 0;
- float max_score = 0.0f;
- int class_num = tensors[0].shape[1] - 5;
- for (size_t i = 0; i < class_num; i++) {
- obj_score_index =
- ((5 + i) * output_h * output_w) + (h * output_w) + w;
- float cls_score = output[obj_score_index];
- if (cls_score > max_score) {
- max_score = cls_score;
- category = i;
- }
- }
- float score = pow(max_score, 0.4) * pow(obj_score, 0.6);
- // score threshold
- if (score <= conf_threshold_) {
- continue;
- }
- if (score > conf_threshold_) {
- // handle box x y w h
- int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w;
- int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w;
- int box_width_index = (3 * output_h * output_w) + (h * output_w) + w;
- int box_height_index = (4 * output_h * output_w) + (h * output_w) + w;
- float x_offset = Tanh(output[x_offset_index]);
- float y_offset = Tanh(output[y_offset_index]);
- float box_width = Sigmoid(output[box_width_index]);
- float box_height = Sigmoid(output[box_height_index]);
- float cx = (w + x_offset) / output_w;
- float cy = (h + y_offset) / output_h;
- // convert from [x, y, w, h] to [x1, y1, x2, y2]
- (*results)[bs].boxes.emplace_back(std::array<float, 4>{
- cx - box_width / 2.0f, cy - box_height / 2.0f,
- cx + box_width / 2.0f, cy + box_height / 2.0f});
- (*results)[bs].label_ids.push_back(category);
- (*results)[bs].scores.push_back(score);
- }
- }
- }
- if ((*results)[bs].boxes.size() == 0) {
- return true;
- }
- // scale boxes to origin shape
- for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
- (*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w;
- (*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h;
- (*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w;
- (*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h;
- }
- // NMS
- utils::NMS(&((*results)[bs]), nms_threshold_);
- // clip box
- for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
- (*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f);
- (*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f);
- (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
- (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
- }
- }
- return true;
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|