yolov6.cc 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "ultra_infer/vision/detection/contrib/yolov6.h"
  15. #include "ultra_infer/utils/perf.h"
  16. #include "ultra_infer/vision/utils/utils.h"
  17. #ifdef WITH_GPU
  18. #include "ultra_infer/vision/utils/cuda_utils.h"
  19. #endif // WITH_GPU
  20. namespace ultra_infer {
  21. namespace vision {
  22. namespace detection {
  23. void YOLOv6::LetterBox(Mat *mat, std::vector<int> size,
  24. std::vector<float> color, bool _auto, bool scale_fill,
  25. bool scale_up, int stride) {
  26. float scale = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
  27. size[0] * 1.0f / static_cast<float>(mat->Width()));
  28. if (!scale_up) {
  29. scale = std::min(scale, 1.0f);
  30. }
  31. int resize_h = int(round(static_cast<float>(mat->Height()) * scale));
  32. int resize_w = int(round(static_cast<float>(mat->Width()) * scale));
  33. int pad_w = size[0] - resize_w;
  34. int pad_h = size[1] - resize_h;
  35. if (_auto) {
  36. pad_h = pad_h % stride;
  37. pad_w = pad_w % stride;
  38. } else if (scale_fill) {
  39. pad_h = 0;
  40. pad_w = 0;
  41. resize_h = size[1];
  42. resize_w = size[0];
  43. }
  44. if (resize_h != mat->Height() || resize_w != mat->Width()) {
  45. Resize::Run(mat, resize_w, resize_h);
  46. }
  47. if (pad_h > 0 || pad_w > 0) {
  48. float half_h = pad_h * 1.0 / 2;
  49. int top = int(round(half_h - 0.1));
  50. int bottom = int(round(half_h + 0.1));
  51. float half_w = pad_w * 1.0 / 2;
  52. int left = int(round(half_w - 0.1));
  53. int right = int(round(half_w + 0.1));
  54. Pad::Run(mat, top, bottom, left, right, color);
  55. }
  56. }
  57. YOLOv6::YOLOv6(const std::string &model_file, const std::string &params_file,
  58. const RuntimeOption &custom_option,
  59. const ModelFormat &model_format) {
  60. if (model_format == ModelFormat::ONNX) {
  61. valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
  62. valid_gpu_backends = {Backend::ORT, Backend::TRT};
  63. } else {
  64. valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
  65. valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
  66. valid_kunlunxin_backends = {Backend::LITE};
  67. valid_ascend_backends = {Backend::LITE};
  68. }
  69. runtime_option = custom_option;
  70. runtime_option.model_format = model_format;
  71. runtime_option.model_file = model_file;
  72. runtime_option.params_file = params_file;
  73. #ifdef WITH_GPU
  74. cudaSetDevice(runtime_option.device_id);
  75. cudaStream_t stream;
  76. CUDA_CHECK(cudaStreamCreate(&stream));
  77. cuda_stream_ = reinterpret_cast<void *>(stream);
  78. runtime_option.SetExternalStream(cuda_stream_);
  79. #endif // WITH_GPU
  80. initialized = Initialize();
  81. }
  82. bool YOLOv6::Initialize() {
  83. // parameters for preprocess
  84. size = {640, 640};
  85. padding_value = {114.0, 114.0, 114.0};
  86. is_mini_pad = false;
  87. is_no_pad = false;
  88. is_scale_up = false;
  89. stride = 32;
  90. max_wh = 4096.0f;
  91. reused_input_tensors_.resize(1);
  92. if (!InitRuntime()) {
  93. FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
  94. return false;
  95. }
  96. // Check if the input shape is dynamic after Runtime already initialized,
  97. // Note that, We need to force is_mini_pad 'false' to keep static
  98. // shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
  99. is_dynamic_input_ = false;
  100. auto shape = InputInfoOfRuntime(0).shape;
  101. for (int i = 0; i < shape.size(); ++i) {
  102. // if height or width is dynamic
  103. if (i >= 2 && shape[i] <= 0) {
  104. is_dynamic_input_ = true;
  105. break;
  106. }
  107. }
  108. if (!is_dynamic_input_) {
  109. is_mini_pad = false;
  110. }
  111. return true;
  112. }
  113. YOLOv6::~YOLOv6() {
  114. #ifdef WITH_GPU
  115. if (use_cuda_preprocessing_) {
  116. CUDA_CHECK(cudaFreeHost(input_img_cuda_buffer_host_));
  117. CUDA_CHECK(cudaFree(input_img_cuda_buffer_device_));
  118. CUDA_CHECK(cudaFree(input_tensor_cuda_buffer_device_));
  119. CUDA_CHECK(cudaStreamDestroy(reinterpret_cast<cudaStream_t>(cuda_stream_)));
  120. }
  121. #endif // WITH_GPU
  122. }
  123. bool YOLOv6::Preprocess(Mat *mat, FDTensor *output,
  124. std::map<std::string, std::array<float, 2>> *im_info) {
  125. // process after image load
  126. float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
  127. size[0] * 1.0f / static_cast<float>(mat->Width()));
  128. if (std::fabs(ratio - 1.0f) > 1e-06) {
  129. int interp = cv::INTER_AREA;
  130. if (ratio > 1.0) {
  131. interp = cv::INTER_LINEAR;
  132. }
  133. int resize_h = int(round(static_cast<float>(mat->Height()) * ratio));
  134. int resize_w = int(round(static_cast<float>(mat->Width()) * ratio));
  135. Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
  136. }
  137. // yolov6's preprocess steps
  138. // 1. letterbox
  139. // 2. BGR->RGB
  140. // 3. HWC->CHW
  141. LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
  142. stride);
  143. BGR2RGB::Run(mat);
  144. // Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
  145. // std::vector<float>(mat->Channels(), 1.0));
  146. // Compute `result = mat * alpha + beta` directly by channel
  147. std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
  148. std::vector<float> beta = {0.0f, 0.0f, 0.0f};
  149. Convert::Run(mat, alpha, beta);
  150. // Record output shape of preprocessed image
  151. (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
  152. static_cast<float>(mat->Width())};
  153. HWC2CHW::Run(mat);
  154. Cast::Run(mat, "float");
  155. mat->ShareWithTensor(output);
  156. output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
  157. return true;
  158. }
  159. void YOLOv6::UseCudaPreprocessing(int max_image_size) {
  160. #ifdef WITH_GPU
  161. use_cuda_preprocessing_ = true;
  162. is_scale_up = true;
  163. if (input_img_cuda_buffer_host_ == nullptr) {
  164. // prepare input data cache in GPU pinned memory
  165. CUDA_CHECK(cudaMallocHost((void **)&input_img_cuda_buffer_host_,
  166. max_image_size * 3));
  167. // prepare input data cache in GPU device memory
  168. CUDA_CHECK(cudaMalloc((void **)&input_img_cuda_buffer_device_,
  169. max_image_size * 3));
  170. CUDA_CHECK(cudaMalloc((void **)&input_tensor_cuda_buffer_device_,
  171. 3 * size[0] * size[1] * sizeof(float)));
  172. }
  173. #else
  174. FDWARNING << "The UltraInfer didn't compile with WITH_GPU=ON." << std::endl;
  175. use_cuda_preprocessing_ = false;
  176. #endif
  177. }
  178. bool YOLOv6::CudaPreprocess(
  179. Mat *mat, FDTensor *output,
  180. std::map<std::string, std::array<float, 2>> *im_info) {
  181. #ifdef WITH_GPU
  182. if (is_mini_pad != false || is_no_pad != false || is_scale_up != true) {
  183. FDERROR << "Preprocessing with CUDA is only available when the arguments "
  184. "satisfy (is_mini_pad=false, is_no_pad=false, is_scale_up=true)."
  185. << std::endl;
  186. return false;
  187. }
  188. // Record the shape of image and the shape of preprocessed image
  189. (*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
  190. static_cast<float>(mat->Width())};
  191. (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
  192. static_cast<float>(mat->Width())};
  193. cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream_);
  194. int src_img_buf_size = mat->Height() * mat->Width() * mat->Channels();
  195. memcpy(input_img_cuda_buffer_host_, mat->Data(), src_img_buf_size);
  196. CUDA_CHECK(cudaMemcpyAsync(input_img_cuda_buffer_device_,
  197. input_img_cuda_buffer_host_, src_img_buf_size,
  198. cudaMemcpyHostToDevice, stream));
  199. utils::CudaYoloPreprocess(input_img_cuda_buffer_device_, mat->Width(),
  200. mat->Height(), input_tensor_cuda_buffer_device_,
  201. size[0], size[1], padding_value, stream);
  202. // Record output shape of preprocessed image
  203. (*im_info)["output_shape"] = {static_cast<float>(size[0]),
  204. static_cast<float>(size[1])};
  205. output->SetExternalData({mat->Channels(), size[0], size[1]}, FDDataType::FP32,
  206. input_tensor_cuda_buffer_device_);
  207. output->device = Device::GPU;
  208. output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
  209. return true;
  210. #else
  211. FDERROR << "CUDA src code was not enabled." << std::endl;
  212. return false;
  213. #endif // WITH_GPU
  214. }
  215. bool YOLOv6::Postprocess(
  216. FDTensor &infer_result, DetectionResult *result,
  217. const std::map<std::string, std::array<float, 2>> &im_info,
  218. float conf_threshold, float nms_iou_threshold) {
  219. FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
  220. result->Clear();
  221. result->Reserve(infer_result.shape[1]);
  222. if (infer_result.dtype != FDDataType::FP32) {
  223. FDERROR << "Only support post process with float32 data." << std::endl;
  224. return false;
  225. }
  226. float *data = static_cast<float *>(infer_result.Data());
  227. for (size_t i = 0; i < infer_result.shape[1]; ++i) {
  228. int s = i * infer_result.shape[2];
  229. float confidence = data[s + 4];
  230. float *max_class_score =
  231. std::max_element(data + s + 5, data + s + infer_result.shape[2]);
  232. confidence *= (*max_class_score);
  233. // filter boxes by conf_threshold
  234. if (confidence <= conf_threshold) {
  235. continue;
  236. }
  237. int32_t label_id = std::distance(data + s + 5, max_class_score);
  238. // convert from [x, y, w, h] to [x1, y1, x2, y2]
  239. result->boxes.emplace_back(std::array<float, 4>{
  240. data[s] - data[s + 2] / 2.0f + label_id * max_wh,
  241. data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
  242. data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
  243. data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
  244. result->label_ids.push_back(label_id);
  245. result->scores.push_back(confidence);
  246. }
  247. utils::NMS(result, nms_iou_threshold);
  248. // scale the boxes to the origin image shape
  249. auto iter_out = im_info.find("output_shape");
  250. auto iter_ipt = im_info.find("input_shape");
  251. FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
  252. "Cannot find input_shape or output_shape from im_info.");
  253. float out_h = iter_out->second[0];
  254. float out_w = iter_out->second[1];
  255. float ipt_h = iter_ipt->second[0];
  256. float ipt_w = iter_ipt->second[1];
  257. float scale = std::min(out_h / ipt_h, out_w / ipt_w);
  258. for (size_t i = 0; i < result->boxes.size(); ++i) {
  259. float pad_h = (out_h - ipt_h * scale) / 2;
  260. float pad_w = (out_w - ipt_w * scale) / 2;
  261. int32_t label_id = (result->label_ids)[i];
  262. // clip box
  263. result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
  264. result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
  265. result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
  266. result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
  267. result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
  268. result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
  269. result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
  270. result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
  271. result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
  272. result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
  273. result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
  274. result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
  275. }
  276. return true;
  277. }
  278. bool YOLOv6::Predict(cv::Mat *im, DetectionResult *result, float conf_threshold,
  279. float nms_iou_threshold) {
  280. Mat mat(*im);
  281. std::map<std::string, std::array<float, 2>> im_info;
  282. // Record the shape of image and the shape of preprocessed image
  283. im_info["input_shape"] = {static_cast<float>(mat.Height()),
  284. static_cast<float>(mat.Width())};
  285. im_info["output_shape"] = {static_cast<float>(mat.Height()),
  286. static_cast<float>(mat.Width())};
  287. if (use_cuda_preprocessing_) {
  288. if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
  289. FDERROR << "Failed to preprocess input image." << std::endl;
  290. return false;
  291. }
  292. } else {
  293. if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
  294. FDERROR << "Failed to preprocess input image." << std::endl;
  295. return false;
  296. }
  297. }
  298. reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
  299. if (!Infer()) {
  300. FDERROR << "Failed to inference." << std::endl;
  301. return false;
  302. }
  303. if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
  304. nms_iou_threshold)) {
  305. FDERROR << "Failed to post process." << std::endl;
  306. return false;
  307. }
  308. return true;
  309. }
  310. } // namespace detection
  311. } // namespace vision
  312. } // namespace ultra_infer