| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/detection/ppdet/multiclass_nms.h"
- #include "ultra_infer/core/fd_tensor.h"
- #include "ultra_infer/utils/utils.h"
- #include <algorithm>
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- template <class T>
- bool SortScorePairDescend(const std::pair<float, T> &pair1,
- const std::pair<float, T> &pair2) {
- return pair1.first > pair2.first;
- }
- void GetMaxScoreIndex(const float *scores, const int &score_size,
- const float &threshold, const int &top_k,
- std::vector<std::pair<float, int>> *sorted_indices) {
- for (size_t i = 0; i < score_size; ++i) {
- if (scores[i] > threshold) {
- sorted_indices->push_back(std::make_pair(scores[i], i));
- }
- }
- // Sort the score pair according to the scores in descending order
- std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
- SortScorePairDescend<int>);
- // Keep top_k scores if needed.
- if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
- sorted_indices->resize(top_k);
- }
- }
- float BBoxArea(const float *box, const bool &normalized) {
- if (box[2] < box[0] || box[3] < box[1]) {
- // If coordinate values are is invalid
- // (e.g. xmax < xmin or ymax < ymin), return 0.
- return 0.f;
- } else {
- const float w = box[2] - box[0];
- const float h = box[3] - box[1];
- if (normalized) {
- return w * h;
- } else {
- // If coordinate values are not within range [0, 1].
- return (w + 1) * (h + 1);
- }
- }
- }
- float JaccardOverlap(const float *box1, const float *box2,
- const bool &normalized) {
- if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
- box2[3] < box1[1]) {
- return 0.f;
- } else {
- const float inter_xmin = std::max(box1[0], box2[0]);
- const float inter_ymin = std::max(box1[1], box2[1]);
- const float inter_xmax = std::min(box1[2], box2[2]);
- const float inter_ymax = std::min(box1[3], box2[3]);
- float norm = normalized ? 0.0f : 1.0f;
- float inter_w = inter_xmax - inter_xmin + norm;
- float inter_h = inter_ymax - inter_ymin + norm;
- const float inter_area = inter_w * inter_h;
- const float bbox1_area = BBoxArea(box1, normalized);
- const float bbox2_area = BBoxArea(box2, normalized);
- return inter_area / (bbox1_area + bbox2_area - inter_area);
- }
- }
- void PaddleMultiClassNMS::FastNMS(const float *boxes, const float *scores,
- const int &num_boxes,
- std::vector<int> *keep_indices) {
- std::vector<std::pair<float, int>> sorted_indices;
- GetMaxScoreIndex(scores, num_boxes, score_threshold, nms_top_k,
- &sorted_indices);
- float adaptive_threshold = nms_threshold;
- while (sorted_indices.size() != 0) {
- const int idx = sorted_indices.front().second;
- bool keep = true;
- for (size_t k = 0; k < keep_indices->size(); ++k) {
- if (!keep) {
- break;
- }
- const int kept_idx = (*keep_indices)[k];
- float overlap =
- JaccardOverlap(boxes + idx * 4, boxes + kept_idx * 4, normalized);
- keep = overlap <= adaptive_threshold;
- }
- if (keep) {
- keep_indices->push_back(idx);
- }
- sorted_indices.erase(sorted_indices.begin());
- if (keep && nms_eta<1.0 & adaptive_threshold> 0.5) {
- adaptive_threshold *= nms_eta;
- }
- }
- }
- int PaddleMultiClassNMS::NMSForEachSample(
- const float *boxes, const float *scores, int num_boxes, int num_classes,
- std::map<int, std::vector<int>> *keep_indices) {
- for (int i = 0; i < num_classes; ++i) {
- if (i == background_label) {
- continue;
- }
- const float *score_for_class_i = scores + i * num_boxes;
- FastNMS(boxes, score_for_class_i, num_boxes, &((*keep_indices)[i]));
- }
- int num_det = 0;
- for (auto iter = keep_indices->begin(); iter != keep_indices->end(); ++iter) {
- num_det += iter->second.size();
- }
- if (keep_top_k > -1 && num_det > keep_top_k) {
- std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
- for (const auto &it : *keep_indices) {
- int label = it.first;
- const float *current_score = scores + label * num_boxes;
- auto &label_indices = it.second;
- for (size_t j = 0; j < label_indices.size(); ++j) {
- int idx = label_indices[j];
- score_index_pairs.push_back(
- std::make_pair(current_score[idx], std::make_pair(label, idx)));
- }
- }
- std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
- SortScorePairDescend<std::pair<int, int>>);
- score_index_pairs.resize(keep_top_k);
- std::map<int, std::vector<int>> new_indices;
- for (size_t j = 0; j < score_index_pairs.size(); ++j) {
- int label = score_index_pairs[j].second.first;
- int idx = score_index_pairs[j].second.second;
- new_indices[label].push_back(idx);
- }
- new_indices.swap(*keep_indices);
- num_det = keep_top_k;
- }
- return num_det;
- }
- void PaddleMultiClassNMS::Compute(const float *boxes_data,
- const float *scores_data,
- const std::vector<int64_t> &boxes_dim,
- const std::vector<int64_t> &scores_dim) {
- int score_size = scores_dim.size();
- int64_t batch_size = scores_dim[0];
- int64_t box_dim = boxes_dim[2];
- int64_t out_dim = box_dim + 2;
- int num_nmsed_out = 0;
- FDASSERT(score_size == 3,
- "Require rank of input scores be 3, but now it's %d.", score_size);
- FDASSERT(boxes_dim[2] == 4,
- "Require the 3-dimension of input boxes be 4, but now it's %lld.",
- box_dim);
- out_num_rois_data.resize(batch_size);
- std::vector<std::map<int, std::vector<int>>> all_indices;
- for (size_t i = 0; i < batch_size; ++i) {
- std::map<int, std::vector<int>> indices; // indices kept for each class
- const float *current_boxes_ptr =
- boxes_data + i * boxes_dim[1] * boxes_dim[2];
- const float *current_scores_ptr =
- scores_data + i * scores_dim[1] * scores_dim[2];
- int num = NMSForEachSample(current_boxes_ptr, current_scores_ptr,
- boxes_dim[1], scores_dim[1], &indices);
- num_nmsed_out += num;
- out_num_rois_data[i] = num;
- all_indices.emplace_back(indices);
- }
- std::vector<int64_t> out_box_dims = {num_nmsed_out, 6};
- std::vector<int64_t> out_index_dims = {num_nmsed_out, 1};
- if (num_nmsed_out == 0) {
- for (size_t i = 0; i < batch_size; ++i) {
- out_num_rois_data[i] = 0;
- }
- return;
- }
- out_box_data.resize(num_nmsed_out * 6);
- out_index_data.resize(num_nmsed_out);
- int count = 0;
- for (size_t i = 0; i < batch_size; ++i) {
- const float *current_boxes_ptr =
- boxes_data + i * boxes_dim[1] * boxes_dim[2];
- const float *current_scores_ptr =
- scores_data + i * scores_dim[1] * scores_dim[2];
- for (const auto &it : all_indices[i]) {
- int label = it.first;
- const auto &indices = it.second;
- const float *current_scores_class_ptr =
- current_scores_ptr + label * scores_dim[2];
- for (size_t j = 0; j < indices.size(); ++j) {
- int start = count * 6;
- out_box_data[start] = label;
- out_box_data[start + 1] = current_scores_class_ptr[indices[j]];
- out_box_data[start + 2] = current_boxes_ptr[indices[j] * 4];
- out_box_data[start + 3] = current_boxes_ptr[indices[j] * 4 + 1];
- out_box_data[start + 4] = current_boxes_ptr[indices[j] * 4 + 2];
- out_box_data[start + 5] = current_boxes_ptr[indices[j] * 4 + 3];
- out_index_data[count] = i * boxes_dim[1] + indices[j];
- count += 1;
- }
- }
- }
- }
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|