| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace utils {
- void DarkParse(const std::vector<float> &heatmap, const std::vector<int> &dim,
- std::vector<float> *coords, const int px, const int py,
- const int index, const int ch) {
- /*DARK postprocessing, Zhang et al. Distribution-Aware Coordinate
- Representation for Human Pose Estimation (CVPR 2020).
- 1) offset = - hassian.inv() * derivative
- 2) dx = (heatmap[x+1] - heatmap[x-1])/2.
- 3) dxx = (dx[x+1] - dx[x-1])/2.
- 4) derivative = Mat([dx, dy])
- 5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
- */
- std::vector<float>::const_iterator first1 = heatmap.begin() + index;
- std::vector<float>::const_iterator last1 =
- heatmap.begin() + index + dim[2] * dim[3];
- std::vector<float> heatmap_ch(first1, last1);
- cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0, dim[2]);
- heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
- cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
- heatmap_mat = heatmap_mat.reshape(1, 1);
- heatmap_ch = std::vector<float>(heatmap_mat.reshape(1, 1));
- float epsilon = 1e-10;
- // sample heatmap to get values in around target location
- float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
- float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
- float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));
- float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
- float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
- float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
- float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
- float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
- float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
- float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
- float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
- float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
- float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));
- // compute dx/dy and dxx/dyy with sampled values
- float dx = 0.5 * (xr - xl);
- float dy = 0.5 * (yu - yd);
- float dxx = 0.25 * (xr2 - 2 * xy + xl2);
- float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
- float dyy = 0.25 * (yu2 - 2 * xy + yd2);
- // finally get offset by derivative and hassian, which combined by dx/dy and
- // dxx/dyy
- if (dxx * dyy - dxy * dxy != 0) {
- float M[2][2] = {dxx, dxy, dxy, dyy};
- float D[2] = {dx, dy};
- cv::Mat hassian(2, 2, CV_32F, M);
- cv::Mat derivative(2, 1, CV_32F, D);
- cv::Mat offset = -hassian.inv() * derivative;
- (*coords)[ch * 2] += offset.at<float>(0, 0);
- (*coords)[ch * 2 + 1] += offset.at<float>(1, 0);
- }
- }
- } // namespace utils
- } // namespace vision
- } // namespace ultra_infer
|