| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <opencv2/opencv.hpp>
- #include <set>
- #include <vector>
- #include "ultra_infer/core/fd_tensor.h"
- #include "ultra_infer/utils/utils.h"
- #include "ultra_infer/vision/common/result.h"
- // #include "unsupported/Eigen/CXX11/Tensor"
- #include "ultra_infer/function/reduce.h"
- #include "ultra_infer/function/softmax.h"
- #include "ultra_infer/function/transpose.h"
- #include "ultra_infer/vision/common/processors/mat.h"
- namespace ultra_infer {
- namespace vision {
- namespace utils {
- // topk sometimes is a very small value
- // so this implementation is simple but I don't think it will
- // cost too much time
- // Also there may be cause problem since we suppose the minimum value is
- // -99999999
- // Do not use this function on array which topk contains value less than
- // -99999999
- template <typename T>
- std::vector<int32_t> TopKIndices(const T *array, int array_size, int topk) {
- topk = std::min(array_size, topk);
- std::vector<int32_t> res(topk);
- std::set<int32_t> searched;
- for (int32_t i = 0; i < topk; ++i) {
- T min = static_cast<T>(-99999999);
- for (int32_t j = 0; j < array_size; ++j) {
- if (searched.find(j) != searched.end()) {
- continue;
- }
- if (*(array + j) > min) {
- res[i] = j;
- min = *(array + j);
- }
- }
- searched.insert(res[i]);
- }
- return res;
- }
- void NMS(DetectionResult *output, float iou_threshold = 0.5,
- std::vector<int> *index = nullptr);
- void NMS(FaceDetectionResult *result, float iou_threshold = 0.5);
- /// Sort DetectionResult/FaceDetectionResult by score
- ULTRAINFER_DECL void SortDetectionResult(DetectionResult *result);
- ULTRAINFER_DECL void SortDetectionResult(FaceDetectionResult *result);
- /// Lex Sort DetectionResult by x(w) & y(h) axis
- ULTRAINFER_DECL void LexSortDetectionResultByXY(DetectionResult *result);
- /// Lex Sort OCRDet Result by x(w) & y(h) axis
- ULTRAINFER_DECL void
- LexSortOCRDetResultByXY(std::vector<std::array<int, 8>> *result);
- /// L2 Norm / cosine similarity (for face recognition, ...)
- ULTRAINFER_DECL std::vector<float>
- L2Normalize(const std::vector<float> &values);
- ULTRAINFER_DECL float CosineSimilarity(const std::vector<float> &a,
- const std::vector<float> &b,
- bool normalized = true);
- /** \brief Do face align for model with five points.
- *
- * \param[in] image The original image
- * \param[in] result FaceDetectionResult
- * \param[in] std_landmarks Standard face template
- * \param[in] output_size The size of output mat
- */
- ULTRAINFER_DECL std::vector<cv::Mat> AlignFaceWithFivePoints(
- cv::Mat &image, FaceDetectionResult &result,
- std::vector<std::array<float, 2>> std_landmarks = {{38.2946f, 51.6963f},
- {73.5318f, 51.5014f},
- {56.0252f, 71.7366f},
- {41.5493f, 92.3655f},
- {70.7299f, 92.2041f}},
- std::array<int, 2> output_size = {112, 112});
- bool CropImageByBox(Mat &src_im, Mat *dst_im, const std::vector<float> &box,
- std::vector<float> *center, std::vector<float> *scale,
- const float expandratio = 0.3);
- /**
- * Function: for keypoint detection model, fine positioning of keypoints in
- * postprocess
- * Parameters:
- * heatmap: model inference results for keypoint detection models
- * dim: shape information of the inference result
- * coords: coordinates after refined positioning
- * px: px = int(coords[ch * 2] + 0.5) , refer to API
- * detection::GetFinalPredictions py: px = int(coords[ch * 2 + 1] + 0.5), refer
- * to API detection::GetFinalPredictions index: index information of heatmap
- * pixels ch: channel Paper reference: DARK postprocessing, Zhang et al.
- * Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR
- * 2020).
- */
- void DarkParse(const std::vector<float> &heatmap, const std::vector<int> &dim,
- std::vector<float> *coords, const int px, const int py,
- const int index, const int ch);
- } // namespace utils
- } // namespace vision
- } // namespace ultra_infer
|