PP-TSMv2-LCNetV2_8frames_uniform.yaml 1.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. Global:
  2. model: PP-TSMv2-LCNetV2_8frames_uniform
  3. mode: check_dataset # check_dataset/train/evaluate/predict
  4. dataset_dir: "./dataset/k400_examples"
  5. device: gpu:0,1,2,3
  6. output: "output"
  7. CheckDataset:
  8. convert:
  9. enable: False
  10. src_dataset_type: null
  11. split:
  12. enable: False
  13. train_percent: null
  14. val_percent: null
  15. Train:
  16. num_classes: 5
  17. epochs_iters: 20
  18. batch_size: 16
  19. learning_rate: 0.01
  20. pretrain_weight_path: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-TSMv2-LCNetV2_8frames_uniform_pretrained.pdparams
  21. warmup_steps: 4
  22. resume_path: null
  23. log_interval: 10
  24. eval_interval: 1
  25. save_interval: 1
  26. Evaluate:
  27. weight_path: "output/best_model/best_model.pdparams"
  28. log_interval: 1
  29. batch_size: 2
  30. Export:
  31. weight_path: https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-TSMv2-LCNetV2_8frames_uniform_pretrained.pdparams
  32. Predict:
  33. batch_size: 1
  34. model_dir: "output/best_model/inference"
  35. input: "https://paddle-model-ecology.bj.bcebos.com/paddlex/videos/demo_video/general_video_classification_001.mp4"
  36. kernel_option:
  37. run_mode: paddle