| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Tuple, Union
- import numpy as np
- from ....modules.image_unwarping.model_list import MODELS
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ..base import BasePredictor
- from ..common import Normalize, ToBatch, ToCHWImage
- from .processors import DocTrPostProcess
- from .result import DocTrResult
- class WarpPredictor(BasePredictor):
- """WarpPredictor that inherits from BasePredictor."""
- entities = MODELS
- def __init__(self, *args: List, **kwargs: Dict) -> None:
- """Initializes WarpPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- self.preprocessors, self.infer, self.postprocessors = self._build()
- def _build_batch_sampler(self) -> ImageBatchSampler:
- """Builds and returns an ImageBatchSampler instance.
- Returns:
- ImageBatchSampler: An instance of ImageBatchSampler.
- """
- return ImageBatchSampler()
- def _get_result_class(self) -> type:
- """Returns the warpping result, DocTrResult.
- Returns:
- type: The DocTrResult.
- """
- return DocTrResult
- def _build(self) -> Tuple:
- """Build the preprocessors, inference engine, and postprocessors based on the configuration.
- Returns:
- tuple: A tuple containing the preprocessors, inference engine, and postprocessors.
- """
- preprocessors = {"Read": ReadImage(format="BGR")}
- preprocessors["Normalize"] = Normalize(mean=0.0, std=1.0, scale=1.0 / 255)
- preprocessors["ToCHW"] = ToCHWImage()
- preprocessors["ToBatch"] = ToBatch()
- infer = self.create_static_infer()
- postprocessors = {"DocTrPostProcess": DocTrPostProcess()}
- return preprocessors, infer, postprocessors
- def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]:
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths).
- Returns:
- dict: A dictionary containing the input path, raw image, class IDs, scores, and label names for every instance of the batch. Keys include 'input_path', 'input_img', 'class_ids', 'scores', and 'label_names'.
- """
- batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances)
- batch_imgs = self.preprocessors["Normalize"](imgs=batch_raw_imgs)
- batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs)
- x = self.preprocessors["ToBatch"](imgs=batch_imgs)
- batch_preds = self.infer(x=x)
- batch_warp_preds = self.postprocessors["DocTrPostProcess"](batch_preds)
- return {
- "input_path": batch_data.input_paths,
- "page_index": batch_data.page_indexes,
- "input_img": batch_raw_imgs,
- "doctr_img": batch_warp_preds,
- }
|