| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Union
- from ....modules.video_detection.model_list import MODELS
- from ....utils.func_register import FuncRegister
- from ...common.batch_sampler import VideoBatchSampler
- from ...common.reader import ReadVideo
- from ..base import BasePredictor
- from .processors import DetVideoPostProcess, Image2Array, NormalizeVideo, ResizeVideo
- from .result import DetVideoResult
- class VideoDetPredictor(BasePredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def __init__(
- self,
- nms_thresh: Union[float, None] = None,
- score_thresh: Union[float, None] = None,
- *args,
- **kwargs
- ):
- super().__init__(*args, **kwargs)
- self.nms_thresh = nms_thresh
- self.score_thresh = score_thresh
- self.pre_tfs, self.infer, self.post_op = self._build()
- def _build_batch_sampler(self):
- return VideoBatchSampler()
- def _get_result_class(self):
- return DetVideoResult
- def _build(self):
- pre_tfs = {}
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- name, op = func(self, **args) if args else func(self)
- if op:
- pre_tfs[name] = op
- infer = self.create_static_infer()
- post_op = {}
- for cfg in self.config["PostProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- if tf_key == "DetVideoPostProcess":
- args["label_list"] = self.config["label_list"]
- name, op = func(self, **args) if args else func(self)
- if op:
- post_op[name] = op
- return pre_tfs, infer, post_op
- def process(
- self,
- batch_data,
- nms_thresh: Union[float, None] = None,
- score_thresh: Union[float, None] = None,
- ):
- batch_raw_videos = self.pre_tfs["ReadVideo"](videos=batch_data)
- batch_videos = self.pre_tfs["ResizeVideo"](videos=batch_raw_videos)
- batch_videos = self.pre_tfs["Image2Array"](videos=batch_videos)
- x = self.pre_tfs["NormalizeVideo"](videos=batch_videos)
- num_seg = len(x[0])
- pred_seg = []
- for i in range(num_seg):
- batch_preds = self.infer(x=[x[0][i]])
- pred_seg.append(batch_preds)
- batch_bboxes = self.post_op["DetVideoPostProcess"](
- preds=[pred_seg],
- nms_thresh=nms_thresh or self.nms_thresh,
- score_thresh=score_thresh or self.score_thresh,
- )
- return {
- "input_path": batch_data,
- "result": batch_bboxes,
- }
- @register("ReadVideo")
- def build_readvideo(self, num_seg=8):
- return "ReadVideo", ReadVideo(backend="opencv", num_seg=num_seg)
- @register("ResizeVideo")
- def build_resize(self, target_size=224):
- return "ResizeVideo", ResizeVideo(
- target_size=target_size,
- )
- @register("Image2Array")
- def build_image2array(self, data_format="tchw"):
- return "Image2Array", Image2Array(data_format="tchw")
- @register("NormalizeVideo")
- def build_normalize(
- self,
- scale=255.0,
- ):
- return "NormalizeVideo", NormalizeVideo(scale=scale)
- @register("DetVideoPostProcess")
- def build_postprocess(self, nms_thresh, score_thresh, label_list=[]):
- if not self.nms_thresh:
- self.nms_thresh = nms_thresh
- if not self.score_thresh:
- self.score_thresh = score_thresh
- return "DetVideoPostProcess", DetVideoPostProcess(label_list=label_list)
|