| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Union
- import numpy as np
- from ....utils import logging
- from ....utils.deps import pipeline_requires_extra
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- from ..components import rotate_image
- from .result import DocPreprocessorResult
- @benchmark.time_methods
- class _DocPreprocessorPipeline(BasePipeline):
- """Doc Preprocessor Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: Optional[str] = None,
- pp_option: Optional[PaddlePredictorOption] = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """Initializes the doc preprocessor pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.use_doc_orientation_classify = config.get(
- "use_doc_orientation_classify", True
- )
- if self.use_doc_orientation_classify:
- doc_ori_classify_config = config.get("SubModules", {}).get(
- "DocOrientationClassify",
- {"model_config_error": "config error for doc_ori_classify_model!"},
- )
- self.doc_ori_classify_model = self.create_model(doc_ori_classify_config)
- self.use_doc_unwarping = config.get("use_doc_unwarping", True)
- if self.use_doc_unwarping:
- doc_unwarping_config = config.get("SubModules", {}).get(
- "DocUnwarping",
- {"model_config_error": "config error for doc_unwarping_model!"},
- )
- self.doc_unwarping_model = self.create_model(doc_unwarping_config)
- self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
- self.img_reader = ReadImage(format="BGR")
- def check_model_settings_valid(self, model_settings: Dict) -> bool:
- """
- Check if the the input params for model settings are valid based on the initialized models.
- Args:
- model_settings (Dict): A dictionary containing model settings.
- Returns:
- bool: True if all required models are initialized according to the model settings, False otherwise.
- """
- if (
- model_settings["use_doc_orientation_classify"]
- and not self.use_doc_orientation_classify
- ):
- logging.error(
- "Set use_doc_orientation_classify, but the model for doc orientation classify is not initialized."
- )
- return False
- if model_settings["use_doc_unwarping"] and not self.use_doc_unwarping:
- logging.error(
- "Set use_doc_unwarping, but the model for doc unwarping is not initialized."
- )
- return False
- return True
- def get_model_settings(
- self, use_doc_orientation_classify, use_doc_unwarping
- ) -> dict:
- """
- Retrieve the model settings dictionary based on input parameters.
- Args:
- use_doc_orientation_classify (bool, optional): Whether to use document orientation classification.
- use_doc_unwarping (bool, optional): Whether to use document unwarping.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None:
- use_doc_orientation_classify = self.use_doc_orientation_classify
- if use_doc_unwarping is None:
- use_doc_unwarping = self.use_doc_unwarping
- model_settings = {
- "use_doc_orientation_classify": use_doc_orientation_classify,
- "use_doc_unwarping": use_doc_unwarping,
- }
- return model_settings
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- ) -> DocPreprocessorResult:
- """
- Predict the preprocessing result for the input image or images.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images or pdfs.
- use_doc_orientation_classify (bool): Whether to use document orientation classification.
- use_doc_unwarping (bool): Whether to use document unwarping.
- **kwargs: Additional keyword arguments.
- Returns:
- DocPreprocessorResult: A generator yielding preprocessing results.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify, use_doc_unwarping
- )
- if not self.check_model_settings_valid(model_settings):
- yield {"error": "the input params for model settings are invalid!"}
- for _, batch_data in enumerate(self.batch_sampler(input)):
- image_arrays = self.img_reader(batch_data.instances)
- if model_settings["use_doc_orientation_classify"]:
- preds = list(self.doc_ori_classify_model(image_arrays))
- angles = []
- rot_imgs = []
- for img, pred in zip(image_arrays, preds):
- angle = int(pred["label_names"][0])
- angles.append(angle)
- rot_img = rotate_image(img, angle)
- rot_imgs.append(rot_img)
- else:
- angles = [-1 for _ in range(len(image_arrays))]
- rot_imgs = image_arrays
- if model_settings["use_doc_unwarping"]:
- output_imgs = [
- item["doctr_img"][:, :, ::-1]
- for item in self.doc_unwarping_model(rot_imgs)
- ]
- else:
- output_imgs = rot_imgs
- for input_path, page_index, image_array, angle, rot_img, output_img in zip(
- batch_data.input_paths,
- batch_data.page_indexes,
- image_arrays,
- angles,
- rot_imgs,
- output_imgs,
- ):
- single_img_res = {
- "input_path": input_path,
- "page_index": page_index,
- "input_img": image_array,
- "model_settings": model_settings,
- "angle": angle,
- "rot_img": rot_img,
- "output_img": output_img,
- }
- yield DocPreprocessorResult(single_img_res)
- @pipeline_requires_extra("ocr", alt="ocr-core")
- class DocPreprocessorPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = "doc_preprocessor"
- @property
- def _pipeline_cls(self):
- return _DocPreprocessorPipeline
- def _get_batch_size(self, config):
- return config.get("batch_size", 1)
|