pipeline.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.image_multilabel_classification.result import MLClassResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from .._parallel import AutoParallelImageSimpleInferencePipeline
  22. from ..base import BasePipeline
  23. @benchmark.time_methods
  24. class _ImageMultiLabelClassificationPipeline(BasePipeline):
  25. """Image Multi Label Classification Pipeline"""
  26. def __init__(
  27. self,
  28. config: Dict,
  29. device: str = None,
  30. pp_option: PaddlePredictorOption = None,
  31. use_hpip: bool = False,
  32. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  33. ) -> None:
  34. """
  35. Initializes the class with given configurations and options.
  36. Args:
  37. config (Dict): Configuration dictionary containing model and other parameters.
  38. device (str): The device to run the prediction on. Default is None.
  39. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  40. use_hpip (Optional[bool], optional): Whether to use the
  41. high-performance inference plugin (HPIP) by default. Defaults to None.
  42. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  43. The high-performance inference configuration dictionary.
  44. Defaults to None.
  45. """
  46. super().__init__(
  47. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  48. )
  49. self.threshold = config["SubModules"]["ImageMultiLabelClassification"].get(
  50. "threshold", None
  51. )
  52. image_multilabel_classification_model_config = config["SubModules"][
  53. "ImageMultiLabelClassification"
  54. ]
  55. self.image_multilabel_classification_model = self.create_model(
  56. image_multilabel_classification_model_config
  57. )
  58. image_multilabel_classification_model_config["batch_size"]
  59. def predict(
  60. self,
  61. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  62. threshold: Union[float, dict, list, None] = None,
  63. **kwargs
  64. ) -> MLClassResult:
  65. """Predicts image classification results for the given input.
  66. Args:
  67. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  68. **kwargs: Additional keyword arguments that can be passed to the function.
  69. Returns:
  70. TopkResult: The predicted top k results.
  71. """
  72. yield from self.image_multilabel_classification_model(
  73. input=input,
  74. threshold=self.threshold if threshold is None else threshold,
  75. )
  76. @pipeline_requires_extra("cv")
  77. class ImageMultiLabelClassificationPipeline(AutoParallelImageSimpleInferencePipeline):
  78. entities = "image_multilabel_classification"
  79. @property
  80. def _pipeline_cls(self):
  81. return _ImageMultiLabelClassificationPipeline
  82. def _get_batch_size(self, config):
  83. return config["SubModules"]["ImageMultiLabelClassification"]["batch_size"]