| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Union
- import numpy as np
- from ....utils.deps import pipeline_requires_extra
- from ...models.image_multilabel_classification.result import MLClassResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- @benchmark.time_methods
- class _ImageMultiLabelClassificationPipeline(BasePipeline):
- """Image Multi Label Classification Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (Optional[bool], optional): Whether to use the
- high-performance inference plugin (HPIP) by default. Defaults to None.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.threshold = config["SubModules"]["ImageMultiLabelClassification"].get(
- "threshold", None
- )
- image_multilabel_classification_model_config = config["SubModules"][
- "ImageMultiLabelClassification"
- ]
- self.image_multilabel_classification_model = self.create_model(
- image_multilabel_classification_model_config
- )
- image_multilabel_classification_model_config["batch_size"]
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- threshold: Union[float, dict, list, None] = None,
- **kwargs
- ) -> MLClassResult:
- """Predicts image classification results for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- TopkResult: The predicted top k results.
- """
- yield from self.image_multilabel_classification_model(
- input=input,
- threshold=self.threshold if threshold is None else threshold,
- )
- @pipeline_requires_extra("cv")
- class ImageMultiLabelClassificationPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = "image_multilabel_classification"
- @property
- def _pipeline_cls(self):
- return _ImageMultiLabelClassificationPipeline
- def _get_batch_size(self, config):
- return config["SubModules"]["ImageMultiLabelClassification"]["batch_size"]
|