| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils.deps import pipeline_requires_extra
- from ...models.keypoint_detection.result import KptResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- Number = Union[int, float]
- @benchmark.time_methods
- class _KeypointDetectionPipeline(BasePipeline):
- """Keypoint Detection pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- # create object detection model
- model_cfg = config["SubModules"]["ObjectDetection"]
- model_kwargs = {}
- self.det_threshold = None
- if "threshold" in model_cfg:
- model_kwargs["threshold"] = model_cfg["threshold"]
- self.det_threshold = model_cfg["threshold"]
- if "imgsz" in model_cfg:
- model_kwargs["imgsz"] = model_cfg["imgsz"]
- self.det_model = self.create_model(model_cfg, **model_kwargs)
- # create keypoint detection model
- model_cfg = config["SubModules"]["KeypointDetection"]
- model_kwargs = {}
- if "flip" in model_cfg:
- model_kwargs["flip"] = model_cfg["flip"]
- if "use_udp" in model_cfg:
- model_kwargs["use_udp"] = model_cfg["use_udp"]
- self.kpt_model = self.create_model(model_cfg, **model_kwargs)
- self.kpt_input_size = self.kpt_model.input_size
- def _box_xyxy2cs(
- self, bbox: Union[Number, np.ndarray], padding: float = 1.25
- ) -> Tuple[np.ndarray, np.ndarray]:
- """
- Convert bounding box from (x1, y1, x2, y2) to center and scale.
- Args:
- bbox (Union[Number, np.ndarray]): The bounding box coordinates (x1, y1, x2, y2).
- padding (float): The padding factor to adjust the scale of the bounding box.
- Returns:
- Tuple[np.ndarray, np.ndarray]: The center and scale of the bounding box.
- """
- x1, y1, x2, y2 = bbox[:4]
- center = np.array([x1 + x2, y1 + y2]) * 0.5
- # reshape bbox to fixed aspect ratio
- aspect_ratio = self.kpt_input_size[0] / self.kpt_input_size[1]
- w, h = x2 - x1, y2 - y1
- if w > aspect_ratio * h:
- h = w / aspect_ratio
- elif w < aspect_ratio * h:
- w = h * aspect_ratio
- scale = np.array([w, h]) * padding
- return center, scale
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- det_threshold: Optional[float] = None,
- **kwargs,
- ) -> KptResult:
- """Predicts image classification results for the given input.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
- det_threshold (float): The detection threshold. Defaults to None.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- KptResult: The predicted KeyPoint Detection results.
- """
- det_threshold = self.det_threshold if det_threshold is None else det_threshold
- for det_res in self.det_model(input, threshold=det_threshold):
- ori_img, img_path = det_res["input_img"], det_res["input_path"]
- single_img_res = {"input_path": img_path, "input_img": ori_img, "boxes": []}
- for box in det_res["boxes"]:
- center, scale = self._box_xyxy2cs(box["coordinate"])
- kpt_res = list(
- self.kpt_model(
- {
- "img": ori_img,
- "center": center,
- "scale": scale,
- }
- )
- )[0]
- single_img_res["boxes"].append(
- {
- "coordinate": box["coordinate"],
- "det_score": box["score"],
- "keypoints": kpt_res["kpts"][0]["keypoints"],
- "kpt_score": kpt_res["kpts"][0]["kpt_score"],
- }
- )
- yield KptResult(single_img_res)
- @pipeline_requires_extra("cv")
- class KeypointDetectionPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = "human_keypoint_detection"
- @property
- def _pipeline_cls(self):
- return _KeypointDetectionPipeline
- def _get_batch_size(self, config):
- return config["SubModules"]["ObjectDetection"].get("batch_size", 1)
|