| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils import logging
- from ....utils.deps import pipeline_requires_extra
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ...models.object_detection.result import DetResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- from ..components import CropByBoxes
- from ..ocr.result import OCRResult
- from .result import LayoutParsingResult
- from .utils import get_sub_regions_ocr_res, sorted_layout_boxes
- @benchmark.time_methods
- class _LayoutParsingPipeline(BasePipeline):
- """Layout Parsing Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """Initializes the layout parsing pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.inintial_predictor(config)
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- self._crop_by_boxes = CropByBoxes()
- def inintial_predictor(self, config: Dict) -> None:
- """Initializes the predictor based on the provided configuration.
- Args:
- config (Dict): A dictionary containing the configuration for the predictor.
- Returns:
- None
- """
- self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
- self.use_table_recognition = config.get("use_table_recognition", True)
- self.use_seal_recognition = config.get("use_seal_recognition", True)
- self.use_formula_recognition = config.get("use_formula_recognition", True)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config.get("SubPipelines", {}).get(
- "DocPreprocessor",
- {
- "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
- },
- )
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- layout_det_config = config.get("SubModules", {}).get(
- "LayoutDetection",
- {"model_config_error": "config error for layout_det_model!"},
- )
- layout_kwargs = {}
- if (threshold := layout_det_config.get("threshold", None)) is not None:
- layout_kwargs["threshold"] = threshold
- if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
- layout_kwargs["layout_nms"] = layout_nms
- if (
- layout_unclip_ratio := layout_det_config.get("layout_unclip_ratio", None)
- ) is not None:
- layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
- if (
- layout_merge_bboxes_mode := layout_det_config.get(
- "layout_merge_bboxes_mode", None
- )
- ) is not None:
- layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
- self.layout_det_model = self.create_model(layout_det_config, **layout_kwargs)
- general_ocr_config = config.get("SubPipelines", {}).get(
- "GeneralOCR",
- {"pipeline_config_error": "config error for general_ocr_pipeline!"},
- )
- self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
- if self.use_seal_recognition:
- seal_recognition_config = config.get("SubPipelines", {}).get(
- "SealRecognition",
- {
- "pipeline_config_error": "config error for seal_recognition_pipeline!"
- },
- )
- self.seal_recognition_pipeline = self.create_pipeline(
- seal_recognition_config
- )
- if self.use_table_recognition:
- table_recognition_config = config.get("SubPipelines", {}).get(
- "TableRecognition",
- {
- "pipeline_config_error": "config error for table_recognition_pipeline!"
- },
- )
- self.table_recognition_pipeline = self.create_pipeline(
- table_recognition_config
- )
- if self.use_formula_recognition:
- formula_recognition_config = config.get("SubPipelines", {}).get(
- "FormulaRecognition",
- {
- "pipeline_config_error": "config error for formula_recognition_pipeline!"
- },
- )
- self.formula_recognition_pipeline = self.create_pipeline(
- formula_recognition_config
- )
- return
- def get_layout_parsing_res(
- self,
- image: list,
- layout_det_res: DetResult,
- overall_ocr_res: OCRResult,
- table_res_list: list,
- seal_res_list: list,
- formula_res_list: list,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- text_rec_score_thresh: Optional[float] = None,
- ) -> list:
- """
- Retrieves the layout parsing result based on the layout detection result, OCR result, and other recognition results.
- Args:
- image (list): The input image.
- layout_det_res (DetResult): The detection result containing the layout information of the document.
- overall_ocr_res (OCRResult): The overall OCR result containing text information.
- table_res_list (list): A list of table recognition results.
- seal_res_list (list): A list of seal recognition results.
- formula_res_list (list): A list of formula recognition results.
- text_det_limit_side_len (Optional[int], optional): The maximum side length of the text detection region. Defaults to None.
- text_det_limit_type (Optional[str], optional): The type of limit for the text detection region. Defaults to None.
- text_det_thresh (Optional[float], optional): The confidence threshold for text detection. Defaults to None.
- text_det_box_thresh (Optional[float], optional): The confidence threshold for text detection bounding boxes. Defaults to None
- text_det_unclip_ratio (Optional[float], optional): The unclip ratio for text detection. Defaults to None.
- text_rec_score_thresh (Optional[float], optional): The score threshold for text recognition. Defaults to None.
- Returns:
- list: A list of dictionaries representing the layout parsing result.
- """
- layout_parsing_res = []
- matched_ocr_dict = {}
- formula_index = 0
- table_index = 0
- seal_index = 0
- image = np.array(image)
- object_boxes = []
- for object_box_idx, box_info in enumerate(layout_det_res["boxes"]):
- single_box_res = {}
- box = box_info["coordinate"]
- label = box_info["label"].lower()
- single_box_res["block_bbox"] = box
- single_box_res["block_label"] = label
- single_box_res["block_content"] = ""
- object_boxes.append(box)
- if label == "formula":
- if len(formula_res_list) > 0:
- assert (
- len(formula_res_list) > formula_index
- ), f"The number of \
- formula regions of layout parsing pipeline \
- and formula recognition pipeline are different!"
- single_box_res["block_content"] = formula_res_list[formula_index][
- "rec_formula"
- ]
- formula_index += 1
- elif label == "table":
- if len(table_res_list) > 0:
- assert (
- len(table_res_list) > table_index
- ), f"The number of \
- table regions of layout parsing pipeline \
- and table recognition pipeline are different!"
- single_box_res["block_content"] = table_res_list[table_index][
- "pred_html"
- ]
- table_index += 1
- elif label == "seal":
- if len(seal_res_list) > 0:
- assert (
- len(seal_res_list) > seal_index
- ), f"The number of \
- seal regions of layout parsing pipeline \
- and seal recognition pipeline are different!"
- single_box_res["block_content"] = ", ".join(
- seal_res_list[seal_index]["rec_texts"]
- )
- seal_index += 1
- else:
- ocr_res_in_box, matched_idxes = get_sub_regions_ocr_res(
- overall_ocr_res, [box], return_match_idx=True
- )
- for matched_idx in matched_idxes:
- if matched_ocr_dict.get(matched_idx, None) is None:
- matched_ocr_dict[matched_idx] = [object_box_idx]
- else:
- matched_ocr_dict[matched_idx].append(object_box_idx)
- single_box_res["block_content"] = "\n".join(ocr_res_in_box["rec_texts"])
- layout_parsing_res.append(single_box_res)
- for layout_box_ids in matched_ocr_dict.values():
- # one ocr is matched to multiple layout boxes, split the text into multiple lines
- if len(layout_box_ids) > 1:
- for idx in layout_box_ids:
- wht_im = np.ones(image.shape, dtype=image.dtype) * 255
- box = layout_parsing_res[idx]["block_bbox"]
- x1, y1, x2, y2 = [int(i) for i in box]
- wht_im[y1:y2, x1:x2, :] = image[y1:y2, x1:x2, :]
- sub_ocr_res = list(
- self.general_ocr_pipeline(
- wht_im,
- text_det_limit_side_len=text_det_limit_side_len,
- text_det_limit_type=text_det_limit_type,
- text_det_thresh=text_det_thresh,
- text_det_box_thresh=text_det_box_thresh,
- text_det_unclip_ratio=text_det_unclip_ratio,
- text_rec_score_thresh=text_rec_score_thresh,
- )
- )[0]
- layout_parsing_res[idx]["block_content"] = "\n".join(
- sub_ocr_res["rec_texts"]
- )
- ocr_without_layout_boxes = get_sub_regions_ocr_res(
- overall_ocr_res, object_boxes, flag_within=False
- )
- for ocr_rec_box, ocr_rec_text in zip(
- ocr_without_layout_boxes["rec_boxes"], ocr_without_layout_boxes["rec_texts"]
- ):
- single_box_res = {}
- single_box_res["block_bbox"] = ocr_rec_box
- single_box_res["block_label"] = "other_text"
- single_box_res["block_content"] = ocr_rec_text
- layout_parsing_res.append(single_box_res)
- layout_parsing_res = sorted_layout_boxes(layout_parsing_res, w=image.shape[1])
- return layout_parsing_res
- def check_model_settings_valid(self, input_params: Dict) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- input_params (Dict): A dictionary containing input parameters.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if input_params["use_seal_recognition"] and not self.use_seal_recognition:
- logging.error(
- "Set use_seal_recognition, but the models for seal recognition are not initialized."
- )
- return False
- if input_params["use_table_recognition"] and not self.use_table_recognition:
- logging.error(
- "Set use_table_recognition, but the models for table recognition are not initialized."
- )
- return False
- return True
- def get_model_settings(
- self,
- use_doc_orientation_classify: Optional[bool],
- use_doc_unwarping: Optional[bool],
- use_seal_recognition: Optional[bool],
- use_table_recognition: Optional[bool],
- use_formula_recognition: Optional[bool],
- ) -> dict:
- """
- Get the model settings based on the provided parameters or default values.
- Args:
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_seal_recognition (Optional[bool]): Whether to use seal recognition.
- use_table_recognition (Optional[bool]): Whether to use table recognition.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None and use_doc_unwarping is None:
- use_doc_preprocessor = self.use_doc_preprocessor
- else:
- if use_doc_orientation_classify is True or use_doc_unwarping is True:
- use_doc_preprocessor = True
- else:
- use_doc_preprocessor = False
- if use_seal_recognition is None:
- use_seal_recognition = self.use_seal_recognition
- if use_table_recognition is None:
- use_table_recognition = self.use_table_recognition
- if use_formula_recognition is None:
- use_formula_recognition = self.use_formula_recognition
- return dict(
- use_doc_preprocessor=use_doc_preprocessor,
- use_seal_recognition=use_seal_recognition,
- use_table_recognition=use_table_recognition,
- use_formula_recognition=use_formula_recognition,
- )
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- use_textline_orientation: Optional[bool] = None,
- use_seal_recognition: Optional[bool] = None,
- use_table_recognition: Optional[bool] = None,
- use_formula_recognition: Optional[bool] = None,
- layout_threshold: Optional[Union[float, dict]] = None,
- layout_nms: Optional[bool] = None,
- layout_unclip_ratio: Optional[Union[float, Tuple[float, float], dict]] = None,
- layout_merge_bboxes_mode: Optional[str] = None,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- text_rec_score_thresh: Optional[float] = None,
- seal_det_limit_side_len: Optional[int] = None,
- seal_det_limit_type: Optional[str] = None,
- seal_det_thresh: Optional[float] = None,
- seal_det_box_thresh: Optional[float] = None,
- seal_det_unclip_ratio: Optional[float] = None,
- seal_rec_score_thresh: Optional[float] = None,
- **kwargs,
- ) -> LayoutParsingResult:
- """
- This function predicts the layout parsing result for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or pdf(s) to be processed.
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
- use_seal_recognition (Optional[bool]): Whether to use seal recognition.
- use_table_recognition (Optional[bool]): Whether to use table recognition.
- use_formula_recognition (Optional[bool]): Whether to use formula recognition.
- layout_threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
- layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
- layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
- Defaults to None.
- If it's a single number, then both width and height are used.
- If it's a tuple of two numbers, then they are used separately for width and height respectively.
- If it's None, then no unclipping will be performed.
- layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
- text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
- text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
- text_det_thresh (Optional[float]): Threshold for text detection.
- text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
- text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
- text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
- seal_det_limit_side_len (Optional[int]): Maximum side length for seal detection.
- seal_det_limit_type (Optional[str]): Type of limit to apply for seal detection.
- seal_det_thresh (Optional[float]): Threshold for seal detection.
- seal_det_box_thresh (Optional[float]): Threshold for seal detection boxes.
- seal_det_unclip_ratio (Optional[float]): Ratio for unclipping seal detection boxes.
- seal_rec_score_thresh (Optional[float]): Score threshold for seal recognition.
- **kwargs: Additional keyword arguments.
- Returns:
- LayoutParsingResult: The predicted layout parsing result.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify,
- use_doc_unwarping,
- use_seal_recognition,
- use_table_recognition,
- use_formula_recognition,
- )
- if not self.check_model_settings_valid(model_settings):
- yield {"error": "the input params for model settings are invalid!"}
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- image_array = self.img_reader(batch_data.instances)[0]
- if model_settings["use_doc_preprocessor"]:
- doc_preprocessor_res = list(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )[0]
- else:
- doc_preprocessor_res = {"output_img": image_array}
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- layout_det_res = list(
- self.layout_det_model(
- doc_preprocessor_image,
- threshold=layout_threshold,
- layout_nms=layout_nms,
- layout_unclip_ratio=layout_unclip_ratio,
- layout_merge_bboxes_mode=layout_merge_bboxes_mode,
- )
- )[0]
- overall_ocr_res = list(
- self.general_ocr_pipeline(
- doc_preprocessor_image,
- use_textline_orientation=use_textline_orientation,
- text_det_limit_side_len=text_det_limit_side_len,
- text_det_limit_type=text_det_limit_type,
- text_det_thresh=text_det_thresh,
- text_det_box_thresh=text_det_box_thresh,
- text_det_unclip_ratio=text_det_unclip_ratio,
- text_rec_score_thresh=text_rec_score_thresh,
- )
- )[0]
- if model_settings["use_table_recognition"]:
- table_res_all = list(
- self.table_recognition_pipeline(
- doc_preprocessor_image,
- use_doc_orientation_classify=False,
- use_doc_unwarping=False,
- use_layout_detection=False,
- use_ocr_model=False,
- overall_ocr_res=overall_ocr_res,
- layout_det_res=layout_det_res,
- )
- )[0]
- table_res_list = table_res_all["table_res_list"]
- else:
- table_res_list = []
- if model_settings["use_seal_recognition"]:
- seal_res_all = list(
- self.seal_recognition_pipeline(
- doc_preprocessor_image,
- use_doc_orientation_classify=False,
- use_doc_unwarping=False,
- use_layout_detection=False,
- layout_det_res=layout_det_res,
- seal_det_limit_side_len=seal_det_limit_side_len,
- seal_det_limit_type=seal_det_limit_type,
- seal_det_thresh=seal_det_thresh,
- seal_det_box_thresh=seal_det_box_thresh,
- seal_det_unclip_ratio=seal_det_unclip_ratio,
- seal_rec_score_thresh=seal_rec_score_thresh,
- )
- )[0]
- seal_res_list = seal_res_all["seal_res_list"]
- else:
- seal_res_list = []
- if model_settings["use_formula_recognition"]:
- formula_res_all = list(
- self.formula_recognition_pipeline(
- doc_preprocessor_image,
- use_layout_detection=False,
- use_doc_orientation_classify=False,
- use_doc_unwarping=False,
- layout_det_res=layout_det_res,
- )
- )[0]
- formula_res_list = formula_res_all["formula_res_list"]
- else:
- formula_res_list = []
- parsing_res_list = self.get_layout_parsing_res(
- doc_preprocessor_image,
- layout_det_res=layout_det_res,
- overall_ocr_res=overall_ocr_res,
- table_res_list=table_res_list,
- seal_res_list=seal_res_list,
- formula_res_list=formula_res_list,
- text_det_limit_side_len=text_det_limit_side_len,
- text_det_limit_type=text_det_limit_type,
- text_det_thresh=text_det_thresh,
- text_det_box_thresh=text_det_box_thresh,
- text_det_unclip_ratio=text_det_unclip_ratio,
- text_rec_score_thresh=text_rec_score_thresh,
- )
- single_img_res = {
- "input_path": batch_data.input_paths[0],
- "page_index": batch_data.page_indexes[0],
- "doc_preprocessor_res": doc_preprocessor_res,
- "layout_det_res": layout_det_res,
- "overall_ocr_res": overall_ocr_res,
- "table_res_list": table_res_list,
- "seal_res_list": seal_res_list,
- "formula_res_list": formula_res_list,
- "parsing_res_list": parsing_res_list,
- "model_settings": model_settings,
- }
- yield LayoutParsingResult(single_img_res)
- @pipeline_requires_extra("ocr")
- class LayoutParsingPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = ["layout_parsing"]
- @property
- def _pipeline_cls(self):
- return _LayoutParsingPipeline
- def _get_batch_size(self, config):
- return 1
|