pipeline.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Tuple, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.object_detection.result import DetResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from .._parallel import AutoParallelImageSimpleInferencePipeline
  22. from ..base import BasePipeline
  23. @benchmark.time_methods
  24. class _ObjectDetectionPipeline(BasePipeline):
  25. """Object Detection Pipeline"""
  26. def __init__(
  27. self,
  28. config: Dict,
  29. device: str = None,
  30. pp_option: PaddlePredictorOption = None,
  31. use_hpip: bool = False,
  32. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  33. ) -> None:
  34. """
  35. Initializes the class with given configurations and options.
  36. Args:
  37. config (Dict): Configuration dictionary containing model and other parameters.
  38. device (str): The device to run the prediction on. Default is None.
  39. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  40. use_hpip (bool, optional): Whether to use the high-performance
  41. inference plugin (HPIP) by default. Defaults to False.
  42. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  43. The default high-performance inference configuration dictionary.
  44. Defaults to None.
  45. """
  46. super().__init__(
  47. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  48. )
  49. model_cfg = config["SubModules"]["ObjectDetection"]
  50. model_kwargs = {}
  51. if "threshold" in model_cfg:
  52. model_kwargs["threshold"] = model_cfg["threshold"]
  53. if "img_size" in model_cfg:
  54. model_kwargs["img_size"] = model_cfg["img_size"]
  55. if "layout_nms" in model_cfg:
  56. model_kwargs["layout_nms"] = model_cfg["layout_nms"]
  57. if "layout_unclip_ratio" in model_cfg:
  58. model_kwargs["layout_unclip_ratio"] = model_cfg["layout_unclip_ratio"]
  59. if "layout_merge_bboxes_mode" in model_cfg:
  60. model_kwargs["layout_merge_bboxes_mode"] = model_cfg[
  61. "layout_merge_bboxes_mode"
  62. ]
  63. self.det_model = self.create_model(model_cfg, **model_kwargs)
  64. def predict(
  65. self,
  66. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  67. threshold: Optional[Union[float, dict]] = None,
  68. layout_nms: Optional[bool] = None,
  69. layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
  70. layout_merge_bboxes_mode: Optional[str] = None,
  71. **kwargs,
  72. ) -> DetResult:
  73. """Predicts object detection results for the given input.
  74. Args:
  75. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  76. img_size (Optional[Union[int, Tuple[int, int]]]): The size of the input image. Default is None.
  77. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  78. layout_nms (bool, optional): Whether to use layout-aware NMS. Defaults to False.
  79. layout_unclip_ratio (Optional[Union[float, Tuple[float, float]]], optional): The ratio of unclipping the bounding box.
  80. Defaults to None.
  81. If it's a single number, then both width and height are used.
  82. If it's a tuple of two numbers, then they are used separately for width and height respectively.
  83. If it's None, then no unclipping will be performed.
  84. layout_merge_bboxes_mode (Optional[str], optional): The mode for merging bounding boxes. Defaults to None.
  85. **kwargs: Additional keyword arguments that can be passed to the function.
  86. Returns:
  87. DetResult: The predicted detection results.
  88. """
  89. yield from self.det_model(
  90. input,
  91. threshold=threshold,
  92. layout_nms=layout_nms,
  93. layout_unclip_ratio=layout_unclip_ratio,
  94. layout_merge_bboxes_mode=layout_merge_bboxes_mode,
  95. **kwargs,
  96. )
  97. @pipeline_requires_extra("cv")
  98. class ObjectDetectionPipeline(AutoParallelImageSimpleInferencePipeline):
  99. entities = "object_detection"
  100. @property
  101. def _pipeline_cls(self):
  102. return _ObjectDetectionPipeline
  103. def _get_batch_size(self, config):
  104. return config["SubModules"]["ObjectDetection"].get("batch_size", 1)