pipeline.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.open_vocabulary_segmentation.results import SAMSegResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from ..base import BasePipeline
  22. Number = Union[int, float]
  23. @benchmark.time_methods
  24. @pipeline_requires_extra("multimodal")
  25. class OpenVocabularySegmentationPipeline(BasePipeline):
  26. """Open Vocabulary Segmentation pipeline"""
  27. entities = "open_vocabulary_segmentation"
  28. def __init__(
  29. self,
  30. config: Dict,
  31. device: str = None,
  32. pp_option: PaddlePredictorOption = None,
  33. use_hpip: bool = False,
  34. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  35. ) -> None:
  36. """
  37. Initializes the class with given configurations and options.
  38. Args:
  39. config (Dict): Configuration dictionary containing model and other parameters.
  40. device (str): The device to run the prediction on. Default is None.
  41. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  42. use_hpip (bool, optional): Whether to use the high-performance
  43. inference plugin (HPIP) by default. Defaults to False.
  44. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  45. The default high-performance inference configuration dictionary.
  46. Defaults to None.
  47. """
  48. super().__init__(
  49. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  50. )
  51. # create box-prompted SAM-H
  52. box_prompted_model_cfg = config.get("SubModules", {}).get(
  53. "BoxPromptSegmentation",
  54. {"model_config_error": "config error for doc_ori_classify_model!"},
  55. )
  56. self.box_prompted_model = self.create_model(box_prompted_model_cfg)
  57. # create point-prompted SAM-H
  58. point_prompted_model_cfg = config.get("SubModules", {}).get(
  59. "PointPromptSegmentation",
  60. {"model_config_error": "config error for doc_ori_classify_model!"},
  61. )
  62. self.point_prompted_model = self.create_model(point_prompted_model_cfg)
  63. def predict(
  64. self,
  65. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  66. prompt: Union[List[List[float]], np.ndarray],
  67. prompt_type: str = "box",
  68. **kwargs
  69. ) -> SAMSegResult:
  70. """Predicts image segmentation results for the given input.
  71. Args:
  72. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  73. prompt (list[list[float]] | np.ndarray): The prompt for the input image(s).
  74. prompt_type (str): The type of prompt, either 'box' or 'point'. Default is 'box'.
  75. **kwargs: Additional keyword arguments that can be passed to the function.
  76. Returns:
  77. SAMSegResult: The predicted SAM segmentation results.
  78. """
  79. if prompt_type == "box":
  80. yield from self.box_prompted_model(input, prompts={"box_prompt": prompt})
  81. elif prompt_type == "point":
  82. yield from self.point_prompted_model(
  83. input, prompts={"point_prompt": prompt}
  84. )
  85. else:
  86. raise ValueError(
  87. "Invalid prompt type. Only 'box' and 'point' are supported"
  88. )