pipeline.py 4.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.object_detection.result import DetResult
  18. from ...utils.benchmark import benchmark
  19. from ...utils.hpi import HPIConfig
  20. from ...utils.pp_option import PaddlePredictorOption
  21. from .._parallel import AutoParallelImageSimpleInferencePipeline
  22. from ..base import BasePipeline
  23. @benchmark.time_methods
  24. class _SmallObjectDetectionPipeline(BasePipeline):
  25. """Small Object Detection Pipeline"""
  26. def __init__(
  27. self,
  28. config: Dict,
  29. device: str = None,
  30. pp_option: PaddlePredictorOption = None,
  31. use_hpip: bool = False,
  32. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  33. ) -> None:
  34. """
  35. Initializes the class with given configurations and options.
  36. Args:
  37. config (Dict): Configuration dictionary containing model and other parameters.
  38. device (str): The device to run the prediction on. Default is None.
  39. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  40. use_hpip (bool, optional): Whether to use the high-performance
  41. inference plugin (HPIP) by default. Defaults to False.
  42. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  43. The default high-performance inference configuration dictionary.
  44. Defaults to None.
  45. """
  46. super().__init__(
  47. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  48. )
  49. small_object_detection_model_config = config["SubModules"][
  50. "SmallObjectDetection"
  51. ]
  52. self.small_object_detection_model = self.create_model(
  53. small_object_detection_model_config
  54. )
  55. self.threshold = small_object_detection_model_config["threshold"]
  56. def predict(
  57. self,
  58. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  59. threshold: Union[None, Dict[int, float], float] = None,
  60. **kwargs
  61. ) -> DetResult:
  62. """Predicts small object detection results for the given input.
  63. Args:
  64. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  65. threshold (Optional[float]): The threshold value to filter out low-confidence predictions. Default is None.
  66. If None, it will use the default threshold specified during initialization.
  67. If a dictionary is provided, it should have integer keys corresponding to the class IDs and float values
  68. representing the respective thresholds for each class.
  69. If a single float value is provided, it will be used as the threshold for all classes.
  70. **kwargs: Additional keyword arguments that can be passed to the function.
  71. Returns:
  72. DetResult: The predicted small object detection results.
  73. """
  74. yield from self.small_object_detection_model(input, threshold=threshold)
  75. @pipeline_requires_extra("cv")
  76. class SmallObjectDetectionPipeline(AutoParallelImageSimpleInferencePipeline):
  77. entities = "small_object_detection"
  78. @property
  79. def _pipeline_cls(self):
  80. return _SmallObjectDetectionPipeline
  81. def _get_batch_size(self, config):
  82. return config["SubModules"]["SmallObjectDetection"].get("batch_size", 1)