| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- from ....utils import logging
- from ....utils.deps import pipeline_requires_extra
- from ...common.batch_sampler import ImageBatchSampler
- from ...common.reader import ReadImage
- from ...models.object_detection.result import DetResult
- from ...utils.benchmark import benchmark
- from ...utils.hpi import HPIConfig
- from ...utils.pp_option import PaddlePredictorOption
- from .._parallel import AutoParallelImageSimpleInferencePipeline
- from ..base import BasePipeline
- from ..components import CropByBoxes
- from ..doc_preprocessor.result import DocPreprocessorResult
- from ..ocr.result import OCRResult
- from .result import SingleTableRecognitionResult, TableRecognitionResult
- from .table_recognition_post_processing import get_table_recognition_res
- from .utils import get_neighbor_boxes_idx
- @benchmark.time_methods
- class _TableRecognitionPipeline(BasePipeline):
- """Table Recognition Pipeline"""
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
- ) -> None:
- """Initializes the layout parsing pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use the high-performance
- inference plugin (HPIP) by default. Defaults to False.
- hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
- The default high-performance inference configuration dictionary.
- Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
- )
- self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config.get("SubPipelines", {}).get(
- "DocPreprocessor",
- {
- "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
- },
- )
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- self.use_layout_detection = config.get("use_layout_detection", True)
- if self.use_layout_detection:
- layout_det_config = config.get("SubModules", {}).get(
- "LayoutDetection",
- {"model_config_error": "config error for layout_det_model!"},
- )
- self.layout_det_model = self.create_model(layout_det_config)
- table_structure_config = config.get("SubModules", {}).get(
- "TableStructureRecognition",
- {"model_config_error": "config error for table_structure_model!"},
- )
- self.table_structure_model = self.create_model(table_structure_config)
- self.use_ocr_model = config.get("use_ocr_model", True)
- if self.use_ocr_model:
- general_ocr_config = config.get("SubPipelines", {}).get(
- "GeneralOCR",
- {"pipeline_config_error": "config error for general_ocr_pipeline!"},
- )
- self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
- else:
- self.general_ocr_config_bak = config.get("SubPipelines", {}).get(
- "GeneralOCR", None
- )
- self._crop_by_boxes = CropByBoxes()
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def get_model_settings(
- self,
- use_doc_orientation_classify: Optional[bool],
- use_doc_unwarping: Optional[bool],
- use_layout_detection: Optional[bool],
- use_ocr_model: Optional[bool],
- ) -> dict:
- """
- Get the model settings based on the provided parameters or default values.
- Args:
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_layout_detection (Optional[bool]): Whether to use layout detection.
- use_ocr_model (Optional[bool]): Whether to use OCR model.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None and use_doc_unwarping is None:
- use_doc_preprocessor = self.use_doc_preprocessor
- else:
- if use_doc_orientation_classify is True or use_doc_unwarping is True:
- use_doc_preprocessor = True
- else:
- use_doc_preprocessor = False
- if use_layout_detection is None:
- use_layout_detection = self.use_layout_detection
- if use_ocr_model is None:
- use_ocr_model = self.use_ocr_model
- return dict(
- use_doc_preprocessor=use_doc_preprocessor,
- use_layout_detection=use_layout_detection,
- use_ocr_model=use_ocr_model,
- )
- def check_model_settings_valid(
- self,
- model_settings: Dict,
- overall_ocr_res: OCRResult,
- layout_det_res: DetResult,
- ) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- model_settings (Dict): A dictionary containing input parameters.
- overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
- The overall OCR result with convert_points_to_boxes information.
- layout_det_res (DetResult): The layout detection result.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if model_settings["use_layout_detection"]:
- if layout_det_res is not None:
- logging.error(
- "The layout detection model has already been initialized, please set use_layout_detection=False"
- )
- return False
- if not self.use_layout_detection:
- logging.error(
- "Set use_layout_detection, but the models for layout detection are not initialized."
- )
- return False
- if model_settings["use_ocr_model"]:
- if overall_ocr_res is not None:
- logging.error(
- "The OCR models have already been initialized, please set use_ocr_model=False"
- )
- return False
- if not self.use_ocr_model:
- logging.error(
- "Set use_ocr_model, but the models for OCR are not initialized."
- )
- return False
- else:
- if overall_ocr_res is None:
- logging.error("Set use_ocr_model=False, but no OCR results were found.")
- return False
- return True
- def predict_doc_preprocessor_res(
- self, image_array: np.ndarray, input_params: dict
- ) -> Tuple[DocPreprocessorResult, np.ndarray]:
- """
- Preprocess the document image based on input parameters.
- Args:
- image_array (np.ndarray): The input image array.
- input_params (dict): Dictionary containing preprocessing parameters.
- Returns:
- tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing
- result dictionary and the processed image array.
- """
- if input_params["use_doc_preprocessor"]:
- use_doc_orientation_classify = input_params["use_doc_orientation_classify"]
- use_doc_unwarping = input_params["use_doc_unwarping"]
- doc_preprocessor_res = list(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )[0]
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- else:
- doc_preprocessor_res = {}
- doc_preprocessor_image = image_array
- return doc_preprocessor_res, doc_preprocessor_image
- def split_ocr_bboxes_by_table_cells(self, ori_img, cells_bboxes):
- """
- Splits OCR bounding boxes by table cells and retrieves text.
- Args:
- ori_img (ndarray): The original image from which text regions will be extracted.
- cells_bboxes (list or ndarray): Detected cell bounding boxes to extract text from.
- Returns:
- list: A list containing the recognized texts from each cell.
- """
- # Check if cells_bboxes is a list and convert it if not.
- if not isinstance(cells_bboxes, list):
- cells_bboxes = cells_bboxes.tolist()
- texts_list = [] # Initialize a list to store the recognized texts.
- # Process each bounding box provided in cells_bboxes.
- for i in range(len(cells_bboxes)):
- # Extract and round up the coordinates of the bounding box.
- x1, y1, x2, y2 = [math.ceil(k) for k in cells_bboxes[i]]
- # Perform OCR on the defined region of the image and get the recognized text.
- rec_te = list(self.general_ocr_pipeline(ori_img[y1:y2, x1:x2, :]))[0]
- # Concatenate the texts and append them to the texts_list.
- texts_list.append("".join(rec_te["rec_texts"]))
- # Return the list of recognized texts from each cell.
- return texts_list
- def split_ocr_bboxes_by_table_cells(self, ori_img, cells_bboxes):
- """
- Splits OCR bounding boxes by table cells and retrieves text.
- Args:
- ori_img (ndarray): The original image from which text regions will be extracted.
- cells_bboxes (list or ndarray): Detected cell bounding boxes to extract text from.
- Returns:
- list: A list containing the recognized texts from each cell.
- """
- # Check if cells_bboxes is a list and convert it if not.
- if not isinstance(cells_bboxes, list):
- cells_bboxes = cells_bboxes.tolist()
- texts_list = [] # Initialize a list to store the recognized texts.
- # Process each bounding box provided in cells_bboxes.
- for i in range(len(cells_bboxes)):
- # Extract and round up the coordinates of the bounding box.
- x1, y1, x2, y2 = [math.ceil(k) for k in cells_bboxes[i]]
- # Perform OCR on the defined region of the image and get the recognized text.
- rec_te = list(self.general_ocr_pipeline(ori_img[y1:y2, x1:x2, :]))[0]
- # Concatenate the texts and append them to the texts_list.
- texts_list.append("".join(rec_te["rec_texts"]))
- # Return the list of recognized texts from each cell.
- return texts_list
- def predict_single_table_recognition_res(
- self,
- image_array: np.ndarray,
- overall_ocr_res: OCRResult,
- table_box: list,
- use_ocr_results_with_table_cells: bool = False,
- flag_find_nei_text: bool = True,
- cell_sort_by_y_projection: bool = False,
- ) -> SingleTableRecognitionResult:
- """
- Predict table recognition results from an image array, layout detection results, and OCR results.
- Args:
- image_array (np.ndarray): The input image represented as a numpy array.
- overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
- The overall OCR results containing text recognition information.
- table_box (list): The table box coordinates.
- use_ocr_results_with_table_cells (bool): whether to use OCR results with cells.
- flag_find_nei_text (bool): Whether to find neighboring text.
- cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection.
- Returns:
- SingleTableRecognitionResult: single table recognition result.
- """
- table_structure_pred = list(self.table_structure_model(image_array))[0]
- if use_ocr_results_with_table_cells == True:
- table_cells_result = table_structure_pred["bbox"]
- table_cells_result = [
- [rect[0], rect[1], rect[4], rect[5]] for rect in table_cells_result
- ]
- cells_texts_list = self.split_ocr_bboxes_by_table_cells(
- image_array, table_cells_result
- )
- else:
- cells_texts_list = []
- single_table_recognition_res = get_table_recognition_res(
- table_box,
- table_structure_pred,
- overall_ocr_res,
- cells_texts_list,
- use_ocr_results_with_table_cells,
- cell_sort_by_y_projection=cell_sort_by_y_projection,
- )
- neighbor_text = ""
- if flag_find_nei_text:
- match_idx_list = get_neighbor_boxes_idx(
- overall_ocr_res["rec_boxes"], table_box
- )
- if len(match_idx_list) > 0:
- for idx in match_idx_list:
- neighbor_text += overall_ocr_res["rec_texts"][idx] + "; "
- single_table_recognition_res["neighbor_texts"] = neighbor_text
- return single_table_recognition_res
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- use_layout_detection: Optional[bool] = None,
- use_ocr_model: Optional[bool] = None,
- overall_ocr_res: Optional[OCRResult] = None,
- layout_det_res: Optional[DetResult] = None,
- text_det_limit_side_len: Optional[int] = None,
- text_det_limit_type: Optional[str] = None,
- text_det_thresh: Optional[float] = None,
- text_det_box_thresh: Optional[float] = None,
- text_det_unclip_ratio: Optional[float] = None,
- text_rec_score_thresh: Optional[float] = None,
- use_ocr_results_with_table_cells: bool = False,
- cell_sort_by_y_projection: Optional[bool] = None,
- **kwargs,
- ) -> TableRecognitionResult:
- """
- This function predicts the layout parsing result for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) of pdf(s) to be processed.
- use_layout_detection (bool): Whether to use layout detection.
- use_doc_orientation_classify (bool): Whether to use document orientation classification.
- use_doc_unwarping (bool): Whether to use document unwarping.
- overall_ocr_res (OCRResult): The overall OCR result with convert_points_to_boxes information.
- It will be used if it is not None and use_ocr_model is False.
- layout_det_res (DetResult): The layout detection result.
- It will be used if it is not None and use_layout_detection is False.
- use_ocr_results_with_table_cells (bool): whether to use OCR results with cells.
- cell_sort_by_y_projection (bool): Whether to sort the matched OCR boxes by y-projection.
- **kwargs: Additional keyword arguments.
- Returns:
- TableRecognitionResult: The predicted table recognition result.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify,
- use_doc_unwarping,
- use_layout_detection,
- use_ocr_model,
- )
- if cell_sort_by_y_projection is None:
- cell_sort_by_y_projection = False
- if not self.check_model_settings_valid(
- model_settings, overall_ocr_res, layout_det_res
- ):
- yield {"error": "the input params for model settings are invalid!"}
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- image_array = self.img_reader(batch_data.instances)[0]
- if model_settings["use_doc_preprocessor"]:
- doc_preprocessor_res = list(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )[0]
- else:
- doc_preprocessor_res = {"output_img": image_array}
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- if model_settings["use_ocr_model"]:
- overall_ocr_res = list(
- self.general_ocr_pipeline(
- doc_preprocessor_image,
- text_det_limit_side_len=text_det_limit_side_len,
- text_det_limit_type=text_det_limit_type,
- text_det_thresh=text_det_thresh,
- text_det_box_thresh=text_det_box_thresh,
- text_det_unclip_ratio=text_det_unclip_ratio,
- text_rec_score_thresh=text_rec_score_thresh,
- )
- )[0]
- elif use_ocr_results_with_table_cells == True:
- assert self.general_ocr_config_bak != None
- self.general_ocr_pipeline = self.create_pipeline(
- self.general_ocr_config_bak
- )
- table_res_list = []
- table_region_id = 1
- if not model_settings["use_layout_detection"] and layout_det_res is None:
- layout_det_res = {}
- img_height, img_width = doc_preprocessor_image.shape[:2]
- table_box = [0, 0, img_width - 1, img_height - 1]
- single_table_rec_res = self.predict_single_table_recognition_res(
- doc_preprocessor_image,
- overall_ocr_res,
- table_box,
- use_ocr_results_with_table_cells,
- flag_find_nei_text=False,
- cell_sort_by_y_projection=cell_sort_by_y_projection,
- )
- single_table_rec_res["table_region_id"] = table_region_id
- table_res_list.append(single_table_rec_res)
- table_region_id += 1
- else:
- if model_settings["use_layout_detection"]:
- layout_det_res = list(
- self.layout_det_model(doc_preprocessor_image)
- )[0]
- for box_info in layout_det_res["boxes"]:
- if box_info["label"].lower() in ["table"]:
- crop_img_info = self._crop_by_boxes(image_array, [box_info])
- crop_img_info = crop_img_info[0]
- table_box = crop_img_info["box"]
- single_table_rec_res = (
- self.predict_single_table_recognition_res(
- crop_img_info["img"],
- overall_ocr_res,
- table_box,
- use_ocr_results_with_table_cells,
- cell_sort_by_y_projection=cell_sort_by_y_projection,
- )
- )
- single_table_rec_res["table_region_id"] = table_region_id
- table_res_list.append(single_table_rec_res)
- table_region_id += 1
- single_img_res = {
- "input_path": batch_data.input_paths[0],
- "page_index": batch_data.page_indexes[0],
- "doc_preprocessor_res": doc_preprocessor_res,
- "layout_det_res": layout_det_res,
- "overall_ocr_res": overall_ocr_res,
- "table_res_list": table_res_list,
- "model_settings": model_settings,
- }
- yield TableRecognitionResult(single_img_res)
- @pipeline_requires_extra("ocr")
- class TableRecognitionPipeline(AutoParallelImageSimpleInferencePipeline):
- entities = ["table_recognition"]
- @property
- def _pipeline_cls(self):
- return _TableRecognitionPipeline
- def _get_batch_size(self, config):
- return 1
|