| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import csv
- import functools
- import inspect
- import time
- import uuid
- from pathlib import Path
- from types import GeneratorType
- import numpy as np
- from prettytable import PrettyTable
- from ...utils import logging
- from ...utils.flags import (
- INFER_BENCHMARK,
- INFER_BENCHMARK_OUTPUT_DIR,
- INFER_BENCHMARK_USE_CACHE_FOR_READ,
- PIPELINE_BENCHMARK,
- )
- ENTRY_POINT_NAME = "_entry_point_"
- # XXX: Global mutable state
- _inference_operations = []
- _is_measuring_time = False
- PIPELINE_FUNC_BLACK_LIST = ["inintial_predictor"]
- _step = 0
- _level = 0
- _top_func = None
- class Benchmark:
- def __init__(self, enabled):
- self._enabled = enabled
- self._elapses = {}
- self._warmup = False
- self._detail_list = []
- self._summary_list = []
- self._operation_list = []
- def timeit_with_options(self, name=None, is_read_operation=False):
- # TODO: Refactor
- def _deco(func_or_cls):
- if not self._enabled:
- return func_or_cls
- nonlocal name
- if name is None:
- name = func_or_cls.__qualname__
- if isinstance(func_or_cls, type):
- if not hasattr(func_or_cls, "__call__"):
- raise TypeError
- func = func_or_cls.__call__
- else:
- if not callable(func_or_cls):
- raise TypeError
- func = func_or_cls
- try:
- source_file = inspect.getsourcefile(func)
- source_line = inspect.getsourcelines(func)[1]
- location = f"{source_file}:{source_line}"
- except (TypeError, OSError) as e:
- location = uuid.uuid4().hex
- logging.debug(
- f"Benchmark: failed to get source file and line number: {e}"
- )
- use_cache = is_read_operation and INFER_BENCHMARK_USE_CACHE_FOR_READ
- if use_cache:
- if inspect.isgeneratorfunction(func):
- raise RuntimeError(
- "When `is_read_operation` is `True`, the wrapped function should not be a generator."
- )
- func = functools.lru_cache(maxsize=128)(func)
- @functools.wraps(func)
- def _wrapper(*args, **kwargs):
- args = tuple(
- tuple(arg) if isinstance(arg, list) else arg for arg in args
- )
- kwargs = {
- k: tuple(v) if isinstance(v, list) else v
- for k, v in kwargs.items()
- }
- output = func(*args, **kwargs)
- output = copy.deepcopy(output)
- return output
- else:
- if INFER_BENCHMARK:
- @functools.wraps(func)
- def _wrapper(*args, **kwargs):
- global _is_measuring_time
- operation_name = f"{name}@{location}"
- if _is_measuring_time:
- raise RuntimeError(
- "Nested calls detected: Check the timed modules and exclude nested calls to prevent double-counting."
- )
- if not operation_name.startswith(f"{ENTRY_POINT_NAME}@"):
- _is_measuring_time = True
- tic = time.perf_counter()
- try:
- output = func(*args, **kwargs)
- finally:
- if not operation_name.startswith(f"{ENTRY_POINT_NAME}@"):
- _is_measuring_time = False
- if isinstance(output, GeneratorType):
- return self.watch_generator(output, operation_name)
- else:
- self._update(time.perf_counter() - tic, operation_name)
- return output
- elif PIPELINE_BENCHMARK:
- @functools.wraps(func)
- def _wrapper(*args, **kwargs):
- global _step, _level, _top_func
- _step += 1
- _level += 1
- if _level == 1:
- if _top_func is None:
- _top_func = f"{name}@{location}"
- elif _top_func != f"{name}@{location}":
- raise RuntimeError(
- f"Multiple top-level function calls detected:\n"
- f" Function 1: {_top_func.split('@')[0]}\n"
- f" Location: {_top_func.split('@')[1]}\n"
- f" Function 2: {name}\n"
- f" Location: {location}\n"
- "Only one top-level function can be tracked at a time.\n"
- "Please call 'benchmark.reset()' between top-level function calls."
- )
- operation_name = f"{_step}@{_level}@{name}@{location}"
- tic = time.perf_counter()
- output = func(*args, **kwargs)
- if isinstance(output, GeneratorType):
- return self.watch_generator_simple(output, operation_name)
- else:
- self._update(time.perf_counter() - tic, operation_name)
- _level -= 1
- return output
- if isinstance(func_or_cls, type):
- func_or_cls.__call__ = _wrapper
- return func_or_cls
- else:
- return _wrapper
- return _deco
- def timeit(self, func_or_cls):
- return self.timeit_with_options()(func_or_cls)
- def _is_public_method(self, name):
- return not name.startswith("_")
- def time_methods(self, cls):
- for name, func in cls.__dict__.items():
- if (
- callable(func)
- and self._is_public_method(name)
- and not name.startswith("__")
- and name not in PIPELINE_FUNC_BLACK_LIST
- ):
- setattr(cls, name, self.timeit(func))
- return cls
- def watch_generator(self, generator, name):
- @functools.wraps(generator)
- def wrapper():
- global _is_measuring_time
- while True:
- try:
- if _is_measuring_time:
- raise RuntimeError(
- "Nested calls detected: Check the timed modules and exclude nested calls to prevent double-counting."
- )
- if not name.startswith(f"{ENTRY_POINT_NAME}@"):
- _is_measuring_time = True
- tic = time.perf_counter()
- try:
- item = next(generator)
- finally:
- if not name.startswith(f"{ENTRY_POINT_NAME}@"):
- _is_measuring_time = False
- self._update(time.perf_counter() - tic, name)
- yield item
- except StopIteration:
- break
- return wrapper()
- def watch_generator_simple(self, generator, name):
- @functools.wraps(generator)
- def wrapper():
- global _level
- try:
- while True:
- tic = time.perf_counter()
- try:
- item = next(generator)
- except StopIteration:
- break
- self._update(time.perf_counter() - tic, name)
- yield item
- finally:
- _level -= 1
- return wrapper()
- def reset(self):
- global _step, _level, _top_func
- _step = 0
- _level = 0
- _top_func = None
- self._elapses = {}
- self._detail_list = []
- self._summary_list = []
- self._operation_list = []
- def _update(self, elapse, name):
- elapse = elapse * 1000
- if name in self._elapses:
- self._elapses[name].append(elapse)
- else:
- self._elapses[name] = [elapse]
- @property
- def logs(self):
- return self._elapses
- def start_timing(self):
- self._enabled = True
- def stop_timing(self):
- self._enabled = False
- def start_warmup(self):
- self._warmup = True
- def stop_warmup(self):
- self._warmup = False
- self.reset()
- def gather(self, batch_size):
- # NOTE: The gathering logic here is based on the following assumptions:
- # 1. The operations are performed sequentially.
- # 2. An operation is performed only once at each iteration.
- # 3. Operations do not nest, except that the entry point operation
- # contains all other operations.
- # 4. The input batch size for each operation is `batch_size`.
- # 5. Preprocessing operations are always performed before inference
- # operations, and inference operations are completed before
- # postprocessing operations. There is no interleaving among these
- # stages.
- logs = {k: v for k, v in self.logs.items()}
- summary = {"preprocessing": 0, "inference": 0, "postprocessing": 0}
- for key in logs:
- if key.startswith(f"{ENTRY_POINT_NAME}@"):
- base_predictor_time_list = logs.pop(key)
- break
- iters = len(base_predictor_time_list)
- instances = iters * batch_size
- summary["end_to_end"] = np.mean(base_predictor_time_list)
- detail_list = []
- operation_list = []
- op_tag = "preprocessing"
- for name, time_list in logs.items():
- assert len(time_list) == iters
- avg = np.mean(time_list)
- operation_name = name.split("@")[0]
- location = name.split("@")[1]
- if ":" not in location:
- location = "Unknown"
- detail_list.append(
- (iters, batch_size, instances, operation_name, avg, avg / batch_size)
- )
- operation_list.append((operation_name, location))
- if operation_name in _inference_operations:
- summary["inference"] += avg
- op_tag = "postprocessing"
- else:
- summary[op_tag] += avg
- summary["core"] = (
- summary["preprocessing"] + summary["inference"] + summary["postprocessing"]
- )
- summary["other"] = summary["end_to_end"] - summary["core"]
- summary_list = [
- (
- iters,
- batch_size,
- instances,
- "Preprocessing",
- summary["preprocessing"],
- summary["preprocessing"] / batch_size,
- ),
- (
- iters,
- batch_size,
- instances,
- "Inference",
- summary["inference"],
- summary["inference"] / batch_size,
- ),
- (
- iters,
- batch_size,
- instances,
- "Postprocessing",
- summary["postprocessing"],
- summary["postprocessing"] / batch_size,
- ),
- (
- iters,
- batch_size,
- instances,
- "Core",
- summary["core"],
- summary["core"] / batch_size,
- ),
- (
- iters,
- batch_size,
- instances,
- "Other",
- summary["other"],
- summary["other"] / batch_size,
- ),
- (
- iters,
- batch_size,
- instances,
- "End-to-End",
- summary["end_to_end"],
- summary["end_to_end"] / batch_size,
- ),
- ]
- return detail_list, summary_list, operation_list
- def collect(self, batch_size):
- detail_list, summary_list, operation_list = self.gather(batch_size)
- if self._warmup:
- summary_head = [
- "Iters",
- "Batch Size",
- "Instances",
- "Type",
- "Avg Time Per Iter (ms)",
- "Avg Time Per Instance (ms)",
- ]
- table = PrettyTable(summary_head)
- summary_list = [
- i[:4] + (f"{i[4]:.8f}", f"{i[5]:.8f}") for i in summary_list
- ]
- table.add_rows(summary_list)
- table_title = "Warmup Data".center(len(str(table).split("\n")[0]), " ")
- logging.info(table_title)
- logging.info(table)
- else:
- operation_head = [
- "Operation",
- "Source Code Location",
- ]
- table = PrettyTable(operation_head)
- table.add_rows(operation_list)
- table_title = "Operation Info".center(len(str(table).split("\n")[0]), " ")
- logging.info(table_title)
- logging.info(table)
- detail_head = [
- "Iters",
- "Batch Size",
- "Instances",
- "Operation",
- "Avg Time Per Iter (ms)",
- "Avg Time Per Instance (ms)",
- ]
- table = PrettyTable(detail_head)
- detail_list = [i[:4] + (f"{i[4]:.8f}", f"{i[5]:.8f}") for i in detail_list]
- table.add_rows(detail_list)
- table_title = "Detail Data".center(len(str(table).split("\n")[0]), " ")
- logging.info(table_title)
- logging.info(table)
- summary_head = [
- "Iters",
- "Batch Size",
- "Instances",
- "Type",
- "Avg Time Per Iter (ms)",
- "Avg Time Per Instance (ms)",
- ]
- table = PrettyTable(summary_head)
- summary_list = [
- i[:4] + (f"{i[4]:.8f}", f"{i[5]:.8f}") for i in summary_list
- ]
- table.add_rows(summary_list)
- table_title = "Summary Data".center(len(str(table).split("\n")[0]), " ")
- logging.info(table_title)
- logging.info(table)
- if INFER_BENCHMARK_OUTPUT_DIR:
- save_dir = Path(INFER_BENCHMARK_OUTPUT_DIR)
- save_dir.mkdir(parents=True, exist_ok=True)
- csv_data = [detail_head, *detail_list]
- with open(Path(save_dir) / "detail.csv", "w", newline="") as file:
- writer = csv.writer(file)
- writer.writerows(csv_data)
- csv_data = [summary_head, *summary_list]
- with open(Path(save_dir) / "summary.csv", "w", newline="") as file:
- writer = csv.writer(file)
- writer.writerows(csv_data)
- def gather_pipeline(self):
- info_list = []
- detail_list = []
- operation_list = set()
- summary_list = []
- max_level = 0
- loop_num = 0
- for name, time_list in self.logs.items():
- op_time = np.sum(time_list)
- parts = name.split("@")
- step = int(parts[0])
- level = int(parts[1])
- operation_name = parts[2]
- location = parts[3]
- if ":" not in location:
- location = "Unknown"
- operation_list.add((operation_name, location))
- max_level = max(level, max_level)
- if level == 1:
- loop_num += 1
- format_operation_name = operation_name
- else:
- format_operation_name = " " * int(level - 1) + "-> " + operation_name
- info_list.append(
- (step, level, operation_name, format_operation_name, op_time)
- )
- operation_list = list(operation_list)
- info_list.sort(key=lambda x: x[0])
- step_num = int(len(info_list) / loop_num)
- for idx in range(step_num):
- step = info_list[idx][0]
- format_operation_name = info_list[idx][3]
- op_time = (
- np.sum(
- [info_list[pos][4] for pos in range(idx, len(info_list), step_num)]
- )
- / loop_num
- )
- detail_list.append([step, format_operation_name, op_time])
- level_time_list = [[0] for _ in range(max_level)]
- for idx, info in enumerate(info_list):
- step = info[0]
- level = info[1]
- operation_name = info[2]
- op_time = info[4]
- # The total time consumed by all operations on this layer
- if level > info_list[idx - 1][1]:
- level_time_list[level - 1].append(info_list[idx - 1][4])
- # The total time consumed by each operation on this layer
- while len(summary_list) < level:
- summary_list.append([len(summary_list) + 1, {}])
- if summary_list[level - 1][1].get(operation_name, None) is None:
- summary_list[level - 1][1][operation_name] = [op_time]
- else:
- summary_list[level - 1][1][operation_name].append(op_time)
- new_summary_list = []
- for i in range(len(summary_list)):
- level = summary_list[i][0]
- op_dict = summary_list[i][1]
- ops_all_time = 0.0
- op_info_list = []
- for idx, (name, time_list) in enumerate(op_dict.items()):
- op_all_time = np.sum(time_list) / loop_num
- op_info_list.append([level if i + idx == 0 else "", name, op_all_time])
- ops_all_time += op_all_time
- if i > 0:
- new_summary_list.append(["", "", ""])
- new_summary_list.append(
- [level, "Layer", np.sum(level_time_list[i]) / loop_num]
- )
- new_summary_list.append(["", "Core", ops_all_time])
- new_summary_list.append(
- ["", "Other", np.sum(level_time_list[i]) / loop_num - ops_all_time]
- )
- new_summary_list += op_info_list
- return detail_list, new_summary_list, operation_list
- def _initialize_pipeline_data(self):
- if not (self._operation_list and self._detail_list and self._summary_list):
- self._detail_list, self._summary_list, self._operation_list = (
- self.gather_pipeline()
- )
- def print_pipeline_data(self):
- self._initialize_pipeline_data()
- self.print_operation_info()
- self.print_detail_data()
- self.print_summary_data()
- def print_operation_info(self):
- self._initialize_pipeline_data()
- operation_head = [
- "Operation",
- "Source Code Location",
- ]
- table = PrettyTable(operation_head)
- table.add_rows(self._operation_list)
- table_title = "Operation Info".center(len(str(table).split("\n")[0]), " ")
- logging.info(table_title)
- logging.info(table)
- def print_detail_data(self):
- self._initialize_pipeline_data()
- detail_head = [
- "Step",
- "Operation",
- "Time (ms)",
- ]
- table = PrettyTable(detail_head)
- table.add_rows(self._detail_list)
- table_title = "Detail Data".center(len(str(table).split("\n")[0]), " ")
- table.align["Operation"] = "l"
- table.align["Time (ms)"] = "l"
- logging.info(table_title)
- logging.info(table)
- def print_summary_data(self):
- self._initialize_pipeline_data()
- summary_head = [
- "Level",
- "Operation",
- "Time (ms)",
- ]
- table = PrettyTable(summary_head)
- table.add_rows(self._summary_list)
- table_title = "Summary Data".center(len(str(table).split("\n")[0]), " ")
- table.align["Operation"] = "l"
- table.align["Time (ms)"] = "l"
- logging.info(table_title)
- logging.info(table)
- def save_pipeline_data(self, save_path):
- self._initialize_pipeline_data()
- save_dir = Path(save_path)
- save_dir.mkdir(parents=True, exist_ok=True)
- detail_head = [
- "Step",
- "Operation",
- "Time (ms)",
- ]
- csv_data = [detail_head, *self._detail_list]
- with open(Path(save_dir) / "detail.csv", "w", newline="") as file:
- writer = csv.writer(file)
- writer.writerows(csv_data)
- summary_head = [
- "Level",
- "Operation",
- "Time (ms)",
- ]
- csv_data = [summary_head, *self._summary_list]
- with open(Path(save_dir) / "summary.csv", "w", newline="") as file:
- writer = csv.writer(file)
- writer.writerows(csv_data)
- def get_inference_operations():
- return _inference_operations
- def set_inference_operations(val):
- global _inference_operations
- _inference_operations = val
- if INFER_BENCHMARK or PIPELINE_BENCHMARK:
- benchmark = Benchmark(enabled=True)
- else:
- benchmark = Benchmark(enabled=False)
|