| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <yaml-cpp/yaml.h>
- #include <memory>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #include <iostream>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- namespace PaddleX {
- /*
- * @brief
- * This class represents object for storing all preprocessed data
- * */
- class ImageBlob {
- public:
- // Original image height and width
- std::vector<int> ori_im_size_ = std::vector<int>(2);
- // Newest image height and width after process
- std::vector<int> new_im_size_ = std::vector<int>(2);
- // Image height and width before resize
- std::vector<std::vector<int>> im_size_before_resize_;
- // Reshape order
- std::vector<std::string> reshape_order_;
- // Resize scale
- float scale = 1.0;
- // Buffer for image data after preprocessing
- std::vector<float> im_data_;
- void clear() {
- im_size_before_resize_.clear();
- reshape_order_.clear();
- im_data_.clear();
- }
- };
- /*
- * @brief
- * Abstraction of preprocessing operation class
- * */
- class Transform {
- public:
- virtual void Init(const YAML::Node& item) = 0;
- /*
- * @brief
- * This method executes preprocessing operation on image matrix,
- * result will be returned at second parameter.
- * @param im: single image matrix to be preprocessed
- * @param data: the raw data of single image matrix after preprocessed
- * @return true if transform successfully
- * */
- virtual bool Run(cv::Mat* im, ImageBlob* data) = 0;
- };
- /*
- * @brief
- * This class execute normalization operation on image matrix
- * */
- class Normalize : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- mean_ = item["mean"].as<std::vector<float>>();
- std_ = item["std"].as<std::vector<float>>();
- if (item["min_val"].IsDefined()) {
- min_val_ = item["min_val"].as<std::vector<float>>();
- } else {
- min_val_ = std::vector<float>(mean_.size(), 0.);
- }
- if (item["max_val"].IsDefined()) {
- max_val_ = item["max_val"].as<std::vector<float>>();
- } else {
- max_val_ = std::vector<float>(mean_.size(), 255.);
- }
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- std::vector<float> mean_;
- std::vector<float> std_;
- std::vector<float> min_val_;
- std::vector<float> max_val_;
- };
- /*
- * @brief
- * This class execute resize by short operation on image matrix. At first, it resizes
- * the short side of image matrix to specified length. Accordingly, the long side
- * will be resized in the same proportion. If new length of long side exceeds max
- * size, the long size will be resized to max size, and the short size will be
- * resized in the same proportion
- * */
- class ResizeByShort : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- short_size_ = item["short_size"].as<int>();
- if (item["max_size"].IsDefined()) {
- max_size_ = item["max_size"].as<int>();
- } else {
- max_size_ = -1;
- }
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- float GenerateScale(const cv::Mat& im);
- int short_size_;
- int max_size_;
- };
- /*
- * @brief
- * This class execute resize by long operation on image matrix. At first, it resizes
- * the long side of image matrix to specified length. Accordingly, the short side
- * will be resized in the same proportion.
- * */
- class ResizeByLong : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- long_size_ = item["long_size"].as<int>();
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- int long_size_;
- };
- /*
- * @brief
- * This class execute resize operation on image matrix. It resizes width and height
- * to specified length.
- * */
- class Resize : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- if (item["interp"].IsDefined()) {
- interp_ = item["interp"].as<std::string>();
- }
- if (item["target_size"].IsScalar()) {
- height_ = item["target_size"].as<int>();
- width_ = item["target_size"].as<int>();
- } else if (item["target_size"].IsSequence()) {
- std::vector<int> target_size = item["target_size"].as<std::vector<int>>();
- width_ = target_size[0];
- height_ = target_size[1];
- }
- if (height_ <= 0 || width_ <= 0) {
- std::cerr << "[Resize] target_size should greater than 0" << std::endl;
- exit(-1);
- }
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- int height_;
- int width_;
- std::string interp_;
- };
- /*
- * @brief
- * This class execute center crop operation on image matrix. It crops the center
- * of image matrix accroding to specified size.
- * */
- class CenterCrop : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- if (item["crop_size"].IsScalar()) {
- height_ = item["crop_size"].as<int>();
- width_ = item["crop_size"].as<int>();
- } else if (item["crop_size"].IsSequence()) {
- std::vector<int> crop_size = item["crop_size"].as<std::vector<int>>();
- width_ = crop_size[0];
- height_ = crop_size[1];
- }
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- int height_;
- int width_;
- };
- /*
- * @brief
- * This class execute padding operation on image matrix. It makes border on edge
- * of image matrix.
- * */
- class Padding : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- if (item["coarsest_stride"].IsDefined()) {
- coarsest_stride_ = item["coarsest_stride"].as<int>();
- if (coarsest_stride_ < 1) {
- std::cerr << "[Padding] coarest_stride should greater than 0"
- << std::endl;
- exit(-1);
- }
- }
- if (item["target_size"].IsDefined()) {
- if (item["target_size"].IsScalar()) {
- width_ = item["target_size"].as<int>();
- height_ = item["target_size"].as<int>();
- } else if (item["target_size"].IsSequence()) {
- width_ = item["target_size"].as<std::vector<int>>()[0];
- height_ = item["target_size"].as<std::vector<int>>()[1];
- }
- }
- if (item["im_padding_value"].IsDefined()) {
- im_value_ = item["im_padding_value"].as<std::vector<float>>();
- } else {
- im_value_ = {0, 0, 0};
- }
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- virtual void GeneralPadding(cv::Mat* im,
- const std::vector<float> &padding_val,
- int padding_w, int padding_h);
- virtual void MultichannelPadding(cv::Mat* im,
- const std::vector<float> &padding_val,
- int padding_w, int padding_h);
- private:
- int coarsest_stride_ = -1;
- int width_ = 0;
- int height_ = 0;
- std::vector<float> im_value_;
- };
- /*
- * @brief
- * This class execute clip operation on image matrix
- * */
- class Clip : public Transform {
- public:
- virtual void Init(const YAML::Node& item) {
- min_val_ = item["min_val"].as<std::vector<float>>();
- max_val_ = item["max_val"].as<std::vector<float>>();
- }
- virtual bool Run(cv::Mat* im, ImageBlob* data);
- private:
- std::vector<float> min_val_;
- std::vector<float> max_val_;
- };
- /*
- * @brief
- * This class is transform operations manager. It stores all neccessary
- * transform operations and run them in correct order.
- * */
- class Transforms {
- public:
- void Init(const YAML::Node& node, bool to_rgb = true);
- std::shared_ptr<Transform> CreateTransform(const std::string& name);
- bool Run(cv::Mat* im, ImageBlob* data);
- private:
- std::vector<std::shared_ptr<Transform>> transforms_;
- bool to_rgb_ = true;
- };
- } // namespace PaddleX
|