| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <gflags/gflags.h>
- #include <string>
- #include <vector>
- #include "model_deploy/common/include/paddle_deploy.h"
- PaddleDeploy::Model* model;
- extern "C" __declspec(dllexport) void InitModel(const char* model_type, const char* model_filename, const char* params_filename, const char* cfg_file)
- {
- bool use_gpu = false;
- int gpu_id = 0;
- // create model
- model = PaddleDeploy::CreateModel(model_type); //FLAGS_model_type
- // model init
- model->Init(cfg_file);
- // inference engine init
- PaddleDeploy::PaddleEngineConfig engine_config;
- engine_config.model_filename = model_filename;
- engine_config.params_filename = params_filename;
- engine_config.use_gpu = use_gpu;
- engine_config.gpu_id = gpu_id;
- bool init = model->PaddleEngineInit(engine_config);
- if (init)
- {
- std::cout << "init model success" << std::endl;
- }
- }
- /*
- * img: input for predicting.
- *
- * nWidth: width of img.
- *
- * nHeight: height of img.
- *
- * nChannel: channel of img.
- *
- * output: result of pridict ,include category_id£¬score£¬coordinate¡£
- *
- * nBoxesNum£º number of box
- *
- * LabelList: label list of result
- */
- extern "C" __declspec(dllexport) void ModelPredict(const unsigned char* img, int nWidth, int nHeight,int nChannel, float* output, int* nBoxesNum, char* LabelList)
- {
- // prepare data
- std::vector<cv::Mat> imgs;
- int nType = 0;
- if (nChannel==1)
- {
- nType = CV_8UC1;
- }
- else if (nChannel == 2)
- {
- nType = CV_8UC2;
- }
- else if (nChannel == 3)
- {
- nType = CV_8UC3;
- }
- else if (nChannel == 4)
- {
- nType = CV_8UC4;
- }
- cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
- memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
- //cv::imwrite("./1.png", input);
- imgs.push_back(std::move(input));
- // predict
- std::vector<PaddleDeploy::Result> results;
- bool pre = model->Predict(imgs, &results, 1);
- if (pre)
- {
- std::cout << "model predict success" << std::endl;
- }
- nBoxesNum[0] = results.size();
- std::string label ="";
- for (int num = 0; num < results.size(); num++)
- {
- //std::cout << "res: " << results[num] << std::endl;
- for (int i = 0; i < results[num].det_result->boxes.size(); i++)
- {
- //std::cout << "category: " << results[num].det_result->boxes[i].category << std::endl;
- label = label + results[num].det_result->boxes[i].category+ " ";
- // labelindex
- output[num * 6 + 0] = results[num].det_result->boxes[i].category_id;
- // score
- output[num * 6 + 1] = results[num].det_result->boxes[i].score;
- //// box
- output[num * 6 + 2] = results[num].det_result->boxes[i].coordinate[0];
- output[num * 6 + 3] = results[num].det_result->boxes[i].coordinate[1];
- output[num * 6 + 4] = results[num].det_result->boxes[i].coordinate[2];
- output[num * 6 + 5] = results[num].det_result->boxes[i].coordinate[3];
- }
- }
- memcpy(LabelList, label.c_str(), strlen(label.c_str()));
- }
- extern "C" __declspec(dllexport) void DestructModel()
- {
- delete model;
- std::cout << "destruct model success" << std::endl;
- }
- //DEFINE_string(model_filename, "", "Path of det inference model");
- //DEFINE_string(params_filename, "", "Path of det inference params");
- //DEFINE_string(cfg_file, "", "Path of yaml file");
- //DEFINE_string(model_type, "", "model type");
- //DEFINE_string(image, "", "Path of test image file");
- //DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
- //DEFINE_int32(gpu_id, 0, "GPU card id");
- //
- //int main(int argc, char** argv) {
- // // Parsing command-line
- // google::ParseCommandLineFlags(&argc, &argv, true);
- //
- // // create model
- // PaddleDeploy::Model* model = PaddleDeploy::CreateModel(FLAGS_model_type);
- //
- // // model init
- // model->Init(FLAGS_cfg_file);
- //
- // // inference engine init
- // PaddleDeploy::PaddleEngineConfig engine_config;
- // engine_config.model_filename = FLAGS_model_filename;
- // engine_config.params_filename = FLAGS_params_filename;
- // engine_config.use_gpu = FLAGS_use_gpu;
- // engine_config.gpu_id = FLAGS_gpu_id;
- // model->PaddleEngineInit(engine_config);
- //
- // // prepare data
- // std::vector<cv::Mat> imgs;
- // imgs.push_back(std::move(cv::imread(FLAGS_image)));
- //
- // // predict
- // std::vector<PaddleDeploy::Result> results;
- // model->Predict(imgs, &results, 1);
- //
- // std::cout << results[0] << std::endl;
- // delete model;
- // return 0;
- //}
|