| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '1'
- import paddlex as pdx
- from paddlex.seg import transforms
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomPaddingCrop(
- crop_size=256,
- im_padding_value=[127.5] * 6), transforms.RandomHorizontalFlip(),
- transforms.RandomVerticalFlip(), transforms.Normalize(
- mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6)
- ])
- eval_transforms = transforms.Compose([
- transforms.Padding(
- target_size=256, im_padding_value=[127.5] * 6), transforms.Normalize(
- mean=[0.5] * 6, std=[0.5] * 6, min_val=[0] * 6, max_val=[255] * 6)
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset
- train_dataset = pdx.datasets.ChangeDetDataset(
- data_dir='dataset',
- file_list='dataset/train_list.txt',
- label_list='dataset/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ChangeDetDataset(
- data_dir='dataset',
- file_list='dataset/val_list.txt',
- label_list='dataset/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- num_classes = len(train_dataset.labels)
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p
- model = pdx.seg.UNet(num_classes=num_classes, input_channel=6)
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=400,
- train_dataset=train_dataset,
- train_batch_size=16,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_interval_epochs=10,
- pretrain_weights='CITYSCAPES',
- save_dir='output/unet',
- use_vdl=True)
|