test_object_detection.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from paddlex import create_pipeline
  15. pipeline = create_pipeline(pipeline="object_detection")
  16. output = pipeline.predict(
  17. "./test_samples/general_layout.png",
  18. threshold={0: 0.45, 2: 0.48, 7: 0.4},
  19. layout_nms=True,
  20. layout_merge_bboxes_mode="large",
  21. layout_unclip_ratio=(1.0, 1.0),
  22. )
  23. # output = pipeline.predict(
  24. # "./test_samples/general_layout.png",
  25. # )
  26. # output = pipeline.predict(
  27. # "./test_samples/general_layout.png",
  28. # threshold={0: 0.45, 2: 0.48, 7: 0.4},
  29. # layout_nms=False,
  30. # layout_merge_bboxes_mode="small",
  31. # layout_unclip_ratio=1.1
  32. # )
  33. for res in output:
  34. print(res)
  35. res.print() ## 打印预测的结构化输出
  36. res.save_to_img("./output/") ## 保存结果可视化图像
  37. res.save_to_json("./output/") ## 保存预测的结构化输出