| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pathlib import Path
- from ..base import BaseEvaluator
- from .model_list import MODELS
- class FormulaRecEvaluator(BaseEvaluator):
- """Text Recognition Model Evaluator"""
- entities = MODELS
- def update_config(self):
- """update evaluation config"""
- if self.eval_config.log_interval:
- self.pdx_config.update_log_interval(self.eval_config.log_interval)
- if self.global_config["model"] == "LaTeX_OCR_rec":
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir, "LaTeXOCRDataSet"
- )
- elif self.global_config["model"] in (
- "UniMERNet",
- "PP-FormulaNet-L",
- "PP-FormulaNet-S",
- ):
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir, "SimpleDataSet"
- )
- label_dict_path = None
- if self.eval_config.get("label_dict_path"):
- label_dict_path = self.eval_config.label_dict_path
- else:
- label_dict_path = (
- Path(self.eval_config.weight_path).parent / "label_dict.txt"
- )
- if not label_dict_path.exists():
- label_dict_path = None
- if label_dict_path is not None:
- self.pdx_config.update_label_dict_path(label_dict_path)
- if self.eval_config.batch_size is not None:
- if self.global_config["model"] == "LaTeX_OCR_rec":
- self.pdx_config.update_batch_size_pair(
- self.eval_config.batch_size, mode="eval"
- )
- else:
- self.pdx_config.update_batch_size(
- self.eval_config.batch_size, mode="eval"
- )
- if self.eval_config.get("delimiter", None) is not None:
- self.pdx_config.update_delimiter(self.eval_config.delimiter, mode="eval")
- def get_eval_kwargs(self) -> dict:
- """get key-value arguments of model evaluation function
- Returns:
- dict: the arguments of evaluation function.
- """
- return {
- "weight_path": self.eval_config.weight_path,
- "device": self.get_device(),
- }
|