evaluator.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import tarfile
  15. from pathlib import Path
  16. from ..base import BaseEvaluator
  17. from .model_list import MODELS
  18. class TSADEvaluator(BaseEvaluator):
  19. """TS Anomaly Detection Model Evaluator"""
  20. entities = MODELS
  21. def get_config_path(self, weight_path):
  22. """
  23. get config path
  24. Args:
  25. weight_path (str): The path to the weight
  26. Returns:
  27. config_path (str): The path to the config
  28. """
  29. self.uncompress_tar_file()
  30. config_path = Path(self.eval_config.weight_path).parent.parent / "config.yaml"
  31. return config_path
  32. def update_config(self):
  33. """update evaluation config"""
  34. self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSADDataset")
  35. self.pdx_config.update_weights(self.eval_config.weight_path)
  36. def uncompress_tar_file(self):
  37. """unpackage the tar file containing training outputs and update weight path"""
  38. if tarfile.is_tarfile(self.eval_config.weight_path):
  39. dest_path = Path(self.eval_config.weight_path).parent
  40. with tarfile.open(self.eval_config.weight_path, "r") as tar:
  41. tar.extractall(path=dest_path)
  42. self.eval_config.weight_path = dest_path.joinpath(
  43. "best_accuracy.pdparams/best_model/model.pdparams"
  44. )
  45. def get_eval_kwargs(self) -> dict:
  46. """get key-value arguments of model evaluation function
  47. Returns:
  48. dict: the arguments of evaluation function.
  49. """
  50. return {
  51. "weight_path": self.eval_config.weight_path,
  52. "device": self.get_device(using_device_number=1),
  53. }