| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ....utils import logging
- from ....utils.device import parse_device
- from ....utils.misc import abspath
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- class FormulaRecModel(BaseModel):
- """Formula Recognition Model"""
- METRICS = [
- "acc",
- "norm_edit_dis",
- "Teacher_acc",
- "Teacher_norm_edit_dis",
- "precision",
- "recall",
- "hmean",
- ]
- def train(
- self,
- batch_size: int = None,
- learning_rate: float = None,
- epochs_iters: int = None,
- ips: str = None,
- device: str = "gpu",
- resume_path: str = None,
- dy2st: bool = False,
- amp: str = "OFF",
- num_workers: int = None,
- use_vdl: bool = True,
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to True.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- if batch_size is not None:
- config.update_batch_size(batch_size)
- if learning_rate is not None:
- config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- config._update_epochs(epochs_iters)
- # No need to handle `ips`
- config.update_device(device)
- if resume_path is not None:
- resume_path = abspath(resume_path)
- config._update_checkpoints(resume_path)
- config._update_to_static(dy2st)
- config._update_amp(amp)
- if num_workers is not None:
- config.update_num_workers(num_workers, "train")
- config._update_use_vdl(use_vdl)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- save_dir = abspath(config.get_train_save_dir())
- config._update_output_dir(save_dir)
- cli_args = []
- do_eval = kwargs.pop("do_eval", True)
- profile = kwargs.pop("profile", None)
- if profile is not None:
- cli_args.append(CLIArgument("--profiler_options", profile))
- # Benchmarking mode settings
- benchmark = kwargs.pop("benchmark", None)
- if benchmark is not None:
- envs = benchmark.get("env", None)
- seed = benchmark.get("seed", None)
- do_eval = benchmark.get("do_eval", False)
- num_workers = benchmark.get("num_workers", None)
- config.update_log_ranks(device)
- config._update_amp(benchmark.get("amp", None))
- config.update_shuffle(benchmark.get("shuffle", False))
- config.update_cal_metrics(benchmark.get("cal_metrics", True))
- config.update_shared_memory(benchmark.get("shared_memory", True))
- config.update_print_mem_info(benchmark.get("print_mem_info", True))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- if seed is not None:
- config.update_seed(seed)
- if envs is not None:
- for env_name, env_value in envs.items():
- os.environ[env_name] = str(env_value)
- # PDX related settings
- device_type = device.split(":")[0]
- uniform_output_enabled = kwargs.pop("uniform_output_enabled", True)
- export_with_pir = kwargs.pop("export_with_pir", False)
- config.update({"Global.uniform_output_enabled": uniform_output_enabled})
- config.update({"Global.model_name": self.name})
- if export_with_pir:
- config.update({"Global.export_with_pir": export_with_pir})
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(
- config_path, cli_args, device, ips, save_dir, do_eval=do_eval
- )
- def evaluate(
- self,
- weight_path: str,
- batch_size: int = None,
- ips: str = None,
- device: str = "gpu",
- amp: str = "OFF",
- num_workers: int = None,
- **kwargs,
- ) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- weight_path = abspath(weight_path)
- config._update_checkpoints(weight_path)
- if batch_size is not None:
- config.update_batch_size(batch_size)
- # No need to handle `ips`
- config.update_device(device)
- config._update_amp(amp)
- if num_workers is not None:
- config.update_num_workers(num_workers, "eval")
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, [], device, ips)
- return cp
- def predict(
- self,
- weight_path: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- weight_path = abspath(weight_path)
- config.update_pretrained_weights(weight_path)
- input_path = abspath(input_path)
- config._update_infer_img(
- input_path, infer_list=kwargs.pop("input_list_path", None)
- )
- config.update_device(device)
- # TODO: Handle `device`
- logging.warning("`device` will not be used.")
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- save_dir = abspath(config.get_predict_save_dir())
- config._update_save_res_path(os.path.join(save_dir, "res.txt"))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, [], device)
- def export(self, weight_path: str, save_dir: str, **kwargs) -> CompletedProcess:
- """export the dynamic model to static model
- Args:
- weight_path (str): the model weight file path that used to export.
- save_dir (str): the directory path to save export output.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- config = self.config.copy()
- device = kwargs.pop("device", None)
- if device:
- config.update_device(device)
- if not weight_path.startswith("http"):
- weight_path = abspath(weight_path)
- config.update_pretrained_weights(weight_path)
- save_dir = abspath(save_dir)
- config._update_save_inference_dir(save_dir)
- class_path = kwargs.pop("class_path", None)
- if class_path is not None:
- config.update_class_path(class_path)
- # PDX related settings
- uniform_output_enabled = kwargs.pop("uniform_output_enabled", True)
- export_with_pir = kwargs.pop("export_with_pir", False)
- config.update({"Global.uniform_output_enabled": uniform_output_enabled})
- config.update({"Global.model_name": self.name})
- if export_with_pir:
- config.update({"Global.export_with_pir": export_with_pir})
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.export(config_path, [], None, save_dir)
- def infer(
- self,
- model_dir: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """predict image using infernece model
- Args:
- model_dir (str): the directory path of inference model files that would use to predict.
- input_path (str): the path of image that would be predict.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- model_dir = abspath(model_dir)
- cli_args.append(CLIArgument("--rec_model_dir", model_dir))
- input_path = abspath(input_path)
- cli_args.append(CLIArgument("--image_dir", input_path))
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--use_gpu", str(device_type == "gpu")))
- if save_dir is not None:
- logging.warning("`save_dir` will not be used.")
- dict_path = kwargs.pop("dict_path", None)
- if dict_path is not None:
- dict_path = abspath(dict_path)
- else:
- dict_path = config.get_label_dict_path()
- cli_args.append(CLIArgument("--rec_char_dict_path", dict_path))
- model_type = config._get_model_type()
- cli_args.append(CLIArgument("--rec_algorithm", model_type))
- infer_shape = config._get_infer_shape()
- if infer_shape is not None:
- cli_args.append(CLIArgument("--rec_image_shape", infer_shape))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.infer(config_path, cli_args, device)
- def compression(
- self,
- weight_path: str,
- batch_size: int = None,
- learning_rate: float = None,
- epochs_iters: int = None,
- device: str = "gpu",
- use_vdl: bool = True,
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """compression model
- Args:
- weight_path (str): the path to weight file of model.
- batch_size (int, optional): the batch size value of compression training. Defaults to None.
- learning_rate (float, optional): the learning rate value of compression training. Defaults to None.
- epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None.
- device (str, optional): the device to run compression training. Defaults to 'gpu'.
- use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True.
- save_dir (str, optional): the directory to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- config = self.config.copy()
- export_cli_args = []
- weight_path = abspath(weight_path)
- config.update_pretrained_weights(weight_path)
- if batch_size is not None:
- config.update_batch_size(batch_size)
- if learning_rate is not None:
- config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- config._update_epochs(epochs_iters)
- config.update_device(device)
- config._update_use_vdl(use_vdl)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- save_dir = abspath(config.get_train_save_dir())
- config._update_output_dir(save_dir)
- export_cli_args.append(
- CLIArgument(
- "-o", f"Global.save_inference_dir={os.path.join(save_dir, 'export')}"
- )
- )
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.compression(
- config_path, [], export_cli_args, device, save_dir
- )
|