| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ....utils import logging
- from ....utils.device import parse_device
- from ....utils.misc import abspath
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ..text_rec.model import TextRecModel
- class TableRecModel(TextRecModel):
- """Table Recognition Model"""
- METRICS = ["acc"]
- def predict(
- self,
- weight_path: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs
- ) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- weight_path = abspath(weight_path)
- config.update_pretrained_weights(weight_path)
- input_path = abspath(input_path)
- config._update_infer_img(input_path)
- # TODO: Handle `device`
- logging.warning("`device` will not be used.")
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- save_dir = abspath(config.get_predict_save_dir())
- config._update_save_res_path(save_dir)
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, [], device)
- def infer(
- self,
- model_dir: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs
- ) -> CompletedProcess:
- """predict image using infernece model
- Args:
- model_dir (str): the directory path of inference model files that would use to predict.
- input_path (str): the path of image that would be predict.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- model_dir = abspath(model_dir)
- cli_args.append(CLIArgument("--table_model_dir", model_dir))
- input_path = abspath(input_path)
- cli_args.append(CLIArgument("--image_dir", input_path))
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--use_gpu", str(device_type == "gpu")))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join("output", "infer"))
- cli_args.append(CLIArgument("--output", save_dir))
- dict_path = kwargs.pop("dict_path", None)
- if dict_path is not None:
- dict_path = abspath(dict_path)
- else:
- dict_path = config.get_label_dict_path()
- cli_args.append(CLIArgument("--table_char_dict_path", dict_path))
- model_type = config._get_model_type()
- cli_args.append(CLIArgument("--table_algorithm", model_type))
- infer_shape = config._get_infer_shape()
- if infer_shape is not None:
- cli_args.append(CLIArgument("--table_max_len", infer_shape))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.infer(config_path, cli_args, device)
|