| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ....utils.misc import abspath
- from ..ts_base.config import BaseTSConfig
- class LongForecastConfig(BaseTSConfig):
- """Long Forecast Config"""
- def update_input_len(self, seq_len: int):
- """
- update the input sequence length
- Args:
- seq_len (int): input length
- Raises:
- TypeError: if seq_len is not dict, raising TypeError
- """
- if "seq_len" not in self:
- raise RuntimeError(
- "Not able to update seq_len, because no seq_len config was found."
- )
- self.set_val("seq_len", seq_len)
- def update_predict_len(self, predict_len: int):
- """
- updaet the predict sequence length
- Args:
- predict_len (int): predict length
- Raises:
- RuntimeError: if predict_len is not set, raising RuntimeError
- """
- if "predict_len" not in self:
- raise RuntimeError(
- "Not able to update predict_len, because no predict_len config was found."
- )
- self.set_val("predict_len", predict_len)
- def update_sampling_stride(self, sampling_stride: int):
- """
- updaet the sampling stride of sequence to reduce the training time
- Args:
- sampling_stride (int): sampling rate
- Raises:
- RuntimeError: if sampling stride is not set, raising RuntimeError
- """
- if "sampling_stride" not in self:
- raise RuntimeError(
- "Not able to update sampling_stride, because no sampling_stride config was found."
- )
- self.set_val("sampling_stride", sampling_stride)
- def update_dataset(self, dataset_dir: str, dataset_type: str = None):
- """
- update the dataset
- Args:
- dataset_dir (str): dataset root path
- dataset_type (str, optional): type to set for dataset. Default='TSDataset'
- """
- if dataset_type is None:
- dataset_type = "TSDataset"
- dataset_dir = abspath(dataset_dir)
- ds_cfg = self._make_custom_dataset_config(dataset_dir)
- self.update(ds_cfg)
- def update_basic_info(self, info_params: dict):
- """
- update basic info including time_col, freq, target_cols.
- Args:
- info_params (dict): update basic info
- Raises:
- TypeError: if info_params is not dict, raising TypeError
- """
- if isinstance(info_params, dict):
- self.update({"info_params": info_params})
- else:
- raise TypeError("`info_params` must be dict.")
- def update_patience(self, patience: int):
- """
- update patience.
- Args:
- patience (int): update patience
- Raises:
- RuntimeError: if patience is not found, raising RuntimeError
- """
- if "patience" not in self.model["model_cfg"]:
- raise RuntimeError(
- "Not able to update patience, because no patience config was found."
- )
- self.model["model_cfg"]["patience"] = patience
- def _make_custom_dataset_config(self, dataset_root_path: str):
- """construct the dataset config that meets the format requirements
- Args:
- dataset_root_path (str): the root directory of dataset.
- Returns:
- dict: the dataset config.
- """
- ds_cfg = {
- "dataset": {
- "name": "TSDataset",
- "dataset_root": dataset_root_path,
- "train_path": os.path.join(dataset_root_path, "train.csv"),
- "val_path": os.path.join(dataset_root_path, "val.csv"),
- },
- }
- return ds_cfg
|