| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import tqdm
- import numpy as np
- from .prune import cal_model_size
- from paddleslim.prune import load_sensitivities
- def visualize(model, sensitivities_file, save_dir='./'):
- """将模型裁剪率和每个参数裁剪后精度损失的关系可视化。
- 可视化结果纵轴为eval_metric_loss参数值,横轴为对应的模型被裁剪的比例
- Args:
- model (paddlex.cv.models): paddlex中的模型。
- sensitivities_file (str): 敏感度文件存储路径。
- """
- import matplotlib
- matplotlib.use('Agg')
- import matplotlib.pyplot as plt
- program = model.test_prog
- place = model.places[0]
- fig = plt.figure()
- plt.xlabel("model prune ratio")
- plt.ylabel("evaluation loss")
- title_name = osp.split(sensitivities_file)[-1].split('.')[0]
- plt.title(title_name)
- plt.grid(linestyle='--', linewidth=0.5)
- x = list()
- y = list()
- for loss_thresh in tqdm.tqdm(list(np.arange(0.05, 1, 0.05))):
- prune_ratio = 1 - cal_model_size(
- program, place, sensitivities_file, eval_metric_loss=loss_thresh)
- x.append(prune_ratio)
- y.append(loss_thresh)
- plt.plot(x, y, color='green', linewidth=0.5, marker='o', markersize=3)
- my_x_ticks = np.arange(
- min(np.array(x)) - 0.01,
- max(np.array(x)) + 0.01, 0.05)
- my_y_ticks = np.arange(0.05, 1, 0.05)
- plt.xticks(my_x_ticks, fontsize=3)
- plt.yticks(my_y_ticks, fontsize=3)
- for a, b in zip(x, y):
- plt.text(
- a,
- b, (float('%0.4f' % a), float('%0.3f' % b)),
- ha='center',
- va='bottom',
- fontsize=3)
- suffix = osp.splitext(sensitivities_file)[-1]
- plt.savefig('sensitivities.png', dpi=800)
- plt.close()
|