| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import os
- import cv2
- import numpy as np
- from PIL import Image, ImageDraw
- import paddlex.utils.logging as logging
- from .detection_eval import fixed_linspace, backup_linspace, loadRes
- def visualize_detection(image, result, threshold=0.5, save_dir='./'):
- """
- Visualize bbox and mask results
- """
- image_name = os.path.split(image)[-1]
- image = Image.open(image).convert('RGB')
- image = draw_bbox_mask(image, result, threshold=threshold)
- if save_dir is not None:
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
- image.save(out_path, quality=95)
- logging.info('The visualized result is saved as {}'.format(out_path))
- else:
- return image
- def visualize_segmentation(image, result, weight=0.6, save_dir='./'):
- """
- Convert segment result to color image, and save added image.
- Args:
- image: the path of origin image
- result: the predict result of image
- weight: the image weight of visual image, and the result weight is (1 - weight)
- save_dir: the directory for saving visual image
- """
- label_map = result['label_map']
- color_map = get_color_map_list(256)
- color_map = np.array(color_map).astype("uint8")
- # Use OpenCV LUT for color mapping
- c1 = cv2.LUT(label_map, color_map[:, 0])
- c2 = cv2.LUT(label_map, color_map[:, 1])
- c3 = cv2.LUT(label_map, color_map[:, 2])
- pseudo_img = np.dstack((c1, c2, c3))
- im = cv2.imread(image)
- vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)
- if save_dir is not None:
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- image_name = os.path.split(image)[-1]
- out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
- cv2.imwrite(out_path, vis_result)
- logging.info('The visualized result is saved as {}'.format(out_path))
- else:
- return vis_result
- def get_color_map_list(num_classes):
- """ Returns the color map for visualizing the segmentation mask,
- which can support arbitrary number of classes.
- Args:
- num_classes: Number of classes
- Returns:
- The color map
- """
- color_map = num_classes * [0, 0, 0]
- for i in range(0, num_classes):
- j = 0
- lab = i
- while lab:
- color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
- color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
- color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
- j += 1
- lab >>= 3
- color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
- return color_map
- # expand an array of boxes by a given scale.
- def expand_boxes(boxes, scale):
- """
- """
- w_half = (boxes[:, 2] - boxes[:, 0]) * .5
- h_half = (boxes[:, 3] - boxes[:, 1]) * .5
- x_c = (boxes[:, 2] + boxes[:, 0]) * .5
- y_c = (boxes[:, 3] + boxes[:, 1]) * .5
- w_half *= scale
- h_half *= scale
- boxes_exp = np.zeros(boxes.shape)
- boxes_exp[:, 0] = x_c - w_half
- boxes_exp[:, 2] = x_c + w_half
- boxes_exp[:, 1] = y_c - h_half
- boxes_exp[:, 3] = y_c + h_half
- return boxes_exp
- def clip_bbox(bbox):
- xmin = max(min(bbox[0], 1.), 0.)
- ymin = max(min(bbox[1], 1.), 0.)
- xmax = max(min(bbox[2], 1.), 0.)
- ymax = max(min(bbox[3], 1.), 0.)
- return xmin, ymin, xmax, ymax
- def draw_bbox_mask(image, results, threshold=0.5, alpha=0.7):
- labels = list()
- for dt in np.array(results):
- if dt['category'] not in labels:
- labels.append(dt['category'])
- color_map = get_color_map_list(len(labels))
- for dt in np.array(results):
- cname, bbox, score = dt['category'], dt['bbox'], dt['score']
- if score < threshold:
- continue
- xmin, ymin, w, h = bbox
- xmax = xmin + w
- ymax = ymin + h
- color = tuple(color_map[labels.index(cname)])
- # draw bbox
- draw = ImageDraw.Draw(image)
- draw.line([(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=2,
- fill=color)
- # draw label
- text = "{} {:.2f}".format(cname, score)
- tw, th = draw.textsize(text)
- draw.rectangle([(xmin + 1, ymin - th), (xmin + tw + 1, ymin)],
- fill=color)
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- # draw mask
- if 'mask' in dt:
- mask = dt['mask']
- color_mask = np.array(color_map[labels.index(
- dt['category'])]).astype('float32')
- img_array = np.array(image).astype('float32')
- idx = np.nonzero(mask)
- img_array[idx[0], idx[1], :] *= 1.0 - alpha
- img_array[idx[0], idx[1], :] += alpha * color_mask
- image = Image.fromarray(img_array.astype('uint8'))
- return image
- def draw_pr_curve(eval_details_file=None,
- gt=None,
- pred_bbox=None,
- pred_mask=None,
- iou_thresh=0.5,
- save_dir='./'):
- if eval_details_file is not None:
- import json
- with open(eval_details_file, 'r') as f:
- eval_details = json.load(f)
- pred_bbox = eval_details['bbox']
- if 'mask' in eval_details:
- pred_mask = eval_details['mask']
- gt = eval_details['gt']
- if gt is None or pred_bbox is None:
- raise Exception(
- "gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
- )
- if pred_bbox is not None and len(pred_bbox) == 0:
- raise Exception("There is no predicted bbox.")
- if pred_mask is not None and len(pred_mask) == 0:
- raise Exception("There is no predicted mask.")
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- coco = COCO()
- coco.dataset = gt
- coco.createIndex()
- def _summarize(coco_gt, ap=1, iouThr=None, areaRng='all', maxDets=100):
- p = coco_gt.params
- aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
- mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
- if ap == 1:
- # dimension of precision: [TxRxKxAxM]
- s = coco_gt.eval['precision']
- # IoU
- if iouThr is not None:
- t = np.where(iouThr == p.iouThrs)[0]
- s = s[t]
- s = s[:, :, :, aind, mind]
- else:
- # dimension of recall: [TxKxAxM]
- s = coco_gt.eval['recall']
- if iouThr is not None:
- t = np.where(iouThr == p.iouThrs)[0]
- s = s[t]
- s = s[:, :, aind, mind]
- if len(s[s > -1]) == 0:
- mean_s = -1
- else:
- mean_s = np.mean(s[s > -1])
- return mean_s
- def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'):
- import matplotlib.pyplot as plt
- from pycocotools.cocoeval import COCOeval
- coco_dt = loadRes(coco_gt, coco_dt)
- np.linspace = fixed_linspace
- coco_eval = COCOeval(coco_gt, coco_dt, style)
- coco_eval.params.iouThrs = np.linspace(
- iou_thresh, iou_thresh, 1, endpoint=True)
- np.linspace = backup_linspace
- coco_eval.evaluate()
- coco_eval.accumulate()
- stats = _summarize(coco_eval, iouThr=iou_thresh)
- catIds = coco_gt.getCatIds()
- if len(catIds) != coco_eval.eval['precision'].shape[2]:
- raise Exception(
- "The category number must be same as the third dimension of precisions."
- )
- x = np.arange(0.0, 1.01, 0.01)
- color_map = get_color_map_list(256)[1:256]
- plt.subplot(1, 2, 1)
- plt.title(style + " precision-recall IoU={}".format(iou_thresh))
- plt.xlabel("recall")
- plt.ylabel("precision")
- plt.xlim(0, 1.01)
- plt.ylim(0, 1.01)
- plt.grid(linestyle='--', linewidth=1)
- plt.plot([0, 1], [0, 1], 'r--', linewidth=1)
- my_x_ticks = np.arange(0, 1.01, 0.1)
- my_y_ticks = np.arange(0, 1.01, 0.1)
- plt.xticks(my_x_ticks, fontsize=5)
- plt.yticks(my_y_ticks, fontsize=5)
- for idx, catId in enumerate(catIds):
- pr_array = coco_eval.eval['precision'][0, :, idx, 0, 2]
- precision = pr_array[pr_array > -1]
- ap = np.mean(precision) if precision.size else float('nan')
- nm = coco_gt.loadCats(catId)[0]['name'] + ' AP={:0.2f}'.format(
- float(ap * 100))
- color = tuple(color_map[idx])
- color = [float(c) / 255 for c in color]
- color.append(0.75)
- plt.plot(x, pr_array, color=color, label=nm, linewidth=1)
- plt.legend(loc="lower left", fontsize=5)
- plt.subplot(1, 2, 2)
- plt.title(style + " score-recall IoU={}".format(iou_thresh))
- plt.xlabel('recall')
- plt.ylabel('score')
- plt.xlim(0, 1.01)
- plt.ylim(0, 1.01)
- plt.grid(linestyle='--', linewidth=1)
- plt.xticks(my_x_ticks, fontsize=5)
- plt.yticks(my_y_ticks, fontsize=5)
- for idx, catId in enumerate(catIds):
- nm = coco_gt.loadCats(catId)[0]['name']
- sr_array = coco_eval.eval['scores'][0, :, idx, 0, 2]
- color = tuple(color_map[idx])
- color = [float(c) / 255 for c in color]
- color.append(0.75)
- plt.plot(x, sr_array, color=color, label=nm, linewidth=1)
- plt.legend(loc="lower left", fontsize=5)
- plt.savefig(
- os.path.join(save_dir, "./{}_pr_curve(iou-{}).png".format(
- style, iou_thresh)),
- dpi=800)
- plt.close()
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- cal_pr(coco, pred_bbox, iou_thresh, save_dir, style='bbox')
- if pred_mask is not None:
- cal_pr(coco, pred_mask, iou_thresh, save_dir, style='segm')
|