Video classification is a technology that assigns video clips to predefined categories. It is widely used in action recognition, event detection, and content recommendation. Video classification can identify various dynamic events and scenes, such as sports activities, natural phenomena, traffic conditions, etc., and classify them based on their characteristics. By using deep learning models, especially the combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), video classification can automatically extract spatiotemporal features from videos and perform accurate classification. This technology has important applications in video surveillance, media retrieval, and personalized recommendation systems.
The general video classification pipeline is used to solve video classification tasks by extracting theme and category information from videos and outputting them as labels. This pipeline integrates the industry-renowned PP-TSM and PP-TSMv2 video classification systems, supporting the recognition of 400 video categories. Based on this pipeline, accurate classification of video content can be achieved, covering various fields such as media, security, education, and transportation. This pipeline also provides flexible service deployment options, supporting multiple programming languages on various hardware. Additionally, this pipeline offers secondary development capabilities, allowing you to train and fine-tune models on your own dataset, with seamless integration of the trained models.
The general video classification pipeline includes a video classification module. If you prioritize model accuracy, choose a model with higher accuracy; if you prioritize inference speed, choose a model with faster inference speed; if you prioritize storage size, choose a model with a smaller storage size.
| Model | Model Download Link | Top1 Acc(%) | Model Storage Size (M) | Description |
|---|---|---|---|---|
| PP-TSM-R50_8frames_uniform | Inference Model/Trained Model | 74.36 | 93.4 M | PP-TSM is a video classification model developed by Baidu PaddlePaddle's Vision Team. This model is optimized based on the ResNet-50 backbone network and undergoes model tuning in six aspects: data augmentation, network structure fine-tuning, training strategies, Batch Normalization (BN) layer optimization, pre-trained model selection, and model distillation. Under the center crop evaluation method, its accuracy on Kinetics-400 is improved by 3.95 points compared to the original paper's implementation. |
| PP-TSMv2-LCNetV2_8frames_uniform | Inference Model/Trained Model | 71.71 | 22.5 M | PP-TSMv2 is a lightweight video classification model optimized based on the CPU-oriented model PP-LCNetV2. It undergoes model tuning in seven aspects: backbone network and pre-trained model selection, data augmentation, TSM module tuning, input frame number optimization, decoding speed optimization, DML distillation, and LTA module. Under the center crop evaluation method, it achieves an accuracy of 75.16%, with an inference speed of only 456ms on the CPU for a 10-second video input. |
| PP-TSMv2-LCNetV2_16frames_uniform | Inference Model/Trained Model | 73.11 | 22.5 M |
Note: The above accuracy metrics refer to Top-1 Accuracy on the K400 validation set.
## 2. Quick Start PaddleX supports experiencing the pipeline's effects locally using command line or Python. Before using the general video classification pipeline locally, please ensure that you have completed the installation of the PaddleX wheel package according to the PaddleX Local Installation Guide. #### 2.1 Command Line Experience You can quickly experience the video classification pipeline with a single command. Use the [test file](https://paddle-model-ecology.bj.bcebos.com/paddlex/videos/demo_video/general_video_classification_001.mp4) and replace `--input` with your local path for prediction. ```bash paddlex --pipeline video_classification \ --input general_video_classification_001.mp4 \ --topk 5 \ --save_path ./output \ --device gpu:0 ``` The relevant parameter descriptions can be found in the parameter descriptions in [2.2 Integration via Python Script](#22-integration-with-python-script). After running, the result will be printed to the terminal, as follows: ```bash {'res': {'input_path': 'general_video_classification_001.mp4', 'class_ids': array([ 0, ..., 162], dtype=int32), 'scores': [0.91997, 0.07052, 0.00237, 0.00214, 0.00158], 'label_names': ['abseiling', 'rock_climbing', 'climbing_tree', 'riding_mule', 'ice_climbing']}} ``` The explanation of the result parameters can refer to the result explanation in [2.2 Integration with Python Script](#22-integration-with-python-script). The visualization results are saved under `save_path`, and the visualization result for video classification is as follows:
#### 2.2 Integration with Python Script
* The above command line is for quickly experiencing and viewing the effect. Generally speaking, in a project, it is often necessary to integrate through code. You can complete the rapid inference of the pipeline with just a few lines of code. The inference code is as follows:
```python
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="video_classification")
output = pipeline.predict("general_video_classification_001.mp4", topk=5)
for res in output:
res.print()
res.save_to_video(save_path="./output/")
res.save_to_json(save_path="./output/")
```
In the above Python script, the following steps are executed:
(1) The video classification pipeline object is instantiated via `create_pipeline()`. The specific parameter descriptions are as follows:
| Parameter | Parameter Description | Parameter Type | Default Value |
|---|---|---|---|
pipeline |
The name of the pipeline or the path to the pipeline configuration file. If it is a pipeline name, it must be supported by PaddleX. | str |
None |
config |
Specific configuration information for the pipeline (if set simultaneously with the pipeline, it takes precedence over the pipeline, and the pipeline name must match the pipeline).
|
dict[str, Any] |
None |
device |
The inference device for the pipeline. It supports specifying the specific card number of the GPU, such as "gpu:0", other hardware card numbers, such as "npu:0", and CPU as "cpu". | str |
gpu:0 |
use_hpip |
Whether to enable high-performance inference, which is only available when the pipeline supports high-performance inference. | bool |
False |
| Parameter | Parameter Description | Parameter Type | Options | Default Value |
|---|---|---|---|---|
input |
The data to be predicted, supporting multiple input types (required). | str|list |
[\"/root/data/video1.mp4\", \"/root/data/video2.mp4\"], [\"/root/data1\", \"/root/data2\"] |
None |
device |
The inference device for the pipeline | str|None |
|
None |
topk |
The top topk classes and their corresponding classification probabilities in the prediction results. |
int|None |
|
None |
| Method | Description | Parameter | Parameter Type | Parameter Description | Default Value |
|---|---|---|---|---|---|
print() |
Print the result to the terminal | format_json |
bool |
Whether to format the output content using JSON indentation |
True |
indent |
int |
Specify the indentation level to beautify the output JSON data, making it more readable. Effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Control whether to escape non-ASCII characters to Unicode. When set to True, all non-ASCII characters will be escaped; False will retain the original characters. Effective only when format_json is True |
False |
||
save_to_json() |
Save the result as a JSON file | save_path |
str |
Path to save the file. When it is a directory, the saved file name is consistent with the input file type naming | None |
indent |
int |
Specify the indentation level to beautify the output JSON data, making it more readable. Effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Control whether to escape non-ASCII characters to Unicode. When set to True, all non-ASCII characters will be escaped; False will retain the original characters. Effective only when format_json is True |
False |
||
save_to_video() |
Save the result as a video file | save_path |
str |
Path to save the file, supports directory or file path | None |
| Attribute | Attribute Description |
|---|---|
json |
Get the predicted json format result |
video |
Get the visualized video in dict format |
For the main operations provided by the service:
200, and the attributes of the response body are as follows:| Name | Type | Meaning |
|---|---|---|
errorCode |
integer |
Error code. Fixed at 0. |
errorMsg |
string |
Error message. Fixed at "Success". |
The response body may also have a result attribute, of type object, which stores the operation result information.
| Name | Type | Meaning |
|---|---|---|
errorCode |
integer |
Error code. Same as the response status code. |
errorMsg |
string |
Error message. |
The main operations provided by the service are as follows:
inferClassify videos.
POST /video-classification
| Name | Type | Meaning | Required |
|---|---|---|---|
video |
string |
The URL of the video file accessible by the server or the Base64 encoded result of the video file content. | Yes |
topk |
integer | null |
Refer to the topk parameter description in the predict method of the pipeline. |
No |
| Name | Type | Meaning |
|---|---|---|
categories |
array |
Video category information. |
Each element in categories is an object with the following properties:
| Name | Type | Meaning |
|---|---|---|
id |
integer |
Category ID. |
name |
string |
Category name. |
score |
number |
Category score. |
An example of result is as follows:
{
"categories": [
{
"id": 5,
"name": "Rabbit",
"score": 0.93
}
],
"video": "xxxxxx"
}
import base64
import requests
API_URL = "http://localhost:8080/video-classification" # Service URL
video_path = "./demo.mp4"
output_video_path = "./out.mp4"
# Encode the local video using Base64
with open(video_path, "rb") as file:
video_bytes = file.read()
video_data = base64.b64encode(video_bytes).decode("ascii")
payload = {"video": video_data} # Base64-encoded file content or video URL
# Call the API
response = requests.post(API_URL, json=payload)
# Process the API response
assert response.status_code == 200
result = response.json()["result"]
print("Categories:")
print(result["categories"])
#include <iostream>
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
#include "base64.hpp" // https://github.com/tobiaslocker/base64
int main() {
httplib::Client client("localhost:8080");
const std::string videoPath = "./demo.mp4";
httplib::Headers headers = {
{"Content-Type", "application/json"}
};
// Encode the local video using Base64
std::ifstream file(videoPath, std::ios::binary | std::ios::ate);
std::streamsize size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<char> buffer(size);
if (!file.read(buffer.data(), size)) {
std::cerr << "Error reading file." << std::endl;
return 1;
}
std::string bufferStr(reinterpret_cast<const char*>(buffer.data()), buffer.size());
std::string encodedImage = base64::to_base64(bufferStr);
nlohmann::json jsonObj;
jsonObj["video"] = encodedImage;
std::string body = jsonObj.dump();
// Call the API
auto response = client.Post("/video-classification", headers, body, "application/json");
// Process the API response
if (response && response->status == 200) {
nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
auto result = jsonResponse["result"];
auto categories = result["categories"];
std::cout << "\nCategories:" << std::endl;
for (const auto& category : categories) {
std::cout << category << std::endl;
}
} else {
std::cout << "Failed to send HTTP request." << std::endl;
return 1;
}
return 0;
}
import okhttp3.*;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Base64;
public class Main {
public static void main(String[] args) throws IOException {
String API_URL = "http://localhost:8080/video-classification"; // Service URL
String videoPath = "./demo.mp4"; // Local video
// Encode the local video using Base64
File file = new File(videoPath);
byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
String videoData = Base64.getEncoder().encodeToString(fileContent);
ObjectMapper objectMapper = new ObjectMapper();
ObjectNode params = objectMapper.createObjectNode();
params.put("video", videoData); // Base64-encoded file content or video URL
// Create an OkHttpClient instance
OkHttpClient client = new OkHttpClient();
MediaType JSON = MediaType.Companion.get("application/json; charset=utf-8");
RequestBody body = RequestBody.Companion.create(params.toString(), JSON);
Request request = new Request.Builder()
.url(API_URL)
.post(body)
.build();
// Call the API and process the response
try (Response response = client.newCall(request).execute()) {
if (response.isSuccessful()) {
String responseBody = response.body().string();
JsonNode resultNode = objectMapper.readTree(responseBody);
JsonNode result = resultNode.get("result");
JsonNode categories = result.get("categories");
System.out.println("\nCategories: " + categories.toString());
} else {
System.err.println("Request failed with code: " + response.code());
}
}
}
}
package main
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
)
func main() {
API_URL := "http://localhost:8080/video-classification"
videoPath := "./demo.mp4"
// Encode the local video with Base64
videoBytes, err := ioutil.ReadFile(videoPath)
if err != nil {
fmt.Println("Error reading video file:", err)
return
}
videoData := base64.StdEncoding.EncodeToString(videoBytes)
payload := map[string]string{"video": videoData} // Base64 encoded file content or video URL
payloadBytes, err := json.Marshal(payload)
if err != nil {
fmt.Println("Error marshaling payload:", err)
return
}
// Call the API
client := &http.Client{}
req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
if err != nil {
fmt.Println("Error creating request:", err)
return
}
res, err := client.Do(req)
if err != nil {
fmt.Println("Error sending request:", err)
return
}
defer res.Body.Close()
// Process the response data from the API
body, err := ioutil.ReadAll(res.Body)
if err != nil {
fmt.Println("Error reading response body:", err)
return
}
type Response struct {
Result struct {
Categories []map[string]interface{} `json:"categories"`
} `json:"result"`
}
var respData Response
err = json.Unmarshal([]byte(string(body)), &respData)
if err != nil {
fmt.Println("Error unmarshaling response body:", err)
return
}
fmt.Println("\nCategories:")
for _, category := range respData.Result.Categories {
fmt.Println(category)
}
}
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;
class Program
{
static readonly string API_URL = "http://localhost:8080/video-classification";
static readonly string videoPath = "./demo.mp4";
static async Task Main(string[] args)
{
var httpClient = new HttpClient();
// Encode the local video with Base64
byte[] videoBytes = File.ReadAllBytes(videoPath);
string video_data = Convert.ToBase64String(videoBytes);
var payload = new JObject{ { "video", video_data } }; // Base64 encoded file content or video URL
var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");
// Call the API
HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
response.EnsureSuccessStatusCode();
// Process the response data from the API
string responseBody = await response.Content.ReadAsStringAsync();
JObject jsonResponse = JObject.Parse(responseBody);
Console.WriteLine("\nCategories:");
Console.WriteLine(jsonResponse["result"]["categories"].ToString());
}
}
Node.js
const axios = require('axios');
const fs = require('fs');
const API_URL = 'http://localhost:8080/video-classification';
const videoPath = './demo.mp4';
let config = {
method: 'POST',
maxBodyLength: Infinity,
url: API_URL,
data: JSON.stringify({
'video': encodeImageToBase64(videoPath) // Base64 encoded file content or video URL
})
};
// Encode the local video to Base64
function encodeImageToBase64(filePath) {
const bitmap = fs.readFileSync(filePath);
return Buffer.from(bitmap).toString('base64');
}
// Call the API
axios.request(config)
.then((response) => {
// Process the response data
const result = response.data["result"];
console.log("\nCategories:");
console.log(result["categories"]);
})
.catch((error) => {
console.log(error);
});
<?php
$API_URL = "http://localhost:8080/video-classification"; // Service URL
$video_path = "./demo.mp4";
// Encode the local video to Base64
$video_data = base64_encode(file_get_contents($video_path));
$payload = array("video" => $video_data); // Base64 encoded file content or video URL
// Call the API
$ch = curl_init($API_URL);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);
// Process the response data
$result = json_decode($response, true)["result"];
echo "\nCategories:\n";
print_r($result["categories"]);
?>
📱 Edge Deployment: Edge deployment is a method of placing computing and data processing capabilities directly on the user's device, allowing it to process data locally without relying on remote servers. PaddleX supports deploying models on edge devices such as Android. For detailed procedures on edge deployment, please refer to the PaddleX Edge Deployment Guide. You can choose the appropriate method to deploy the model pipeline according to your needs and proceed with subsequent AI application integration.
If the default model weights provided by the general video classification pipeline are not satisfactory in terms of accuracy or speed for your specific scenario, you can attempt to fine-tune the existing model using your own domain-specific or application-specific data to improve the recognition performance of the general video classification pipeline in your scenario.
Since the general video classification pipeline only includes a video classification module, if the performance of the pipeline is not up to expectations, you can analyze the videos with poor recognition and refer to the corresponding fine-tuning tutorial links in the table below for model fine-tuning.
| Scenario | Fine-Tuning Module | Fine-Tuning Reference Link |
|---|---|---|
| Inaccurate video classification | Video Classification Module | Link |
After completing the fine-tuning with your private dataset, you will obtain the local model weight file.
If you need to use the fine-tuned model weights, simply modify the pipeline configuration file by replacing the path to the fine-tuned model weights with the corresponding location in the pipeline configuration file:
...
SubModules:
VideoClassification:
module_name: video_classification
model_name: PP-TSMv2-LCNetV2_8frames_uniform
model_dir: null # Replace with the fine-tuned video classification model weights path
batch_size: 1
topk: 1
...
Subsequently, refer to the command-line method or Python script method in the local experience to load the modified pipeline configuration file.
PaddleX supports a variety of mainstream hardware devices, including NVIDIA GPU, Kunlunxin XPU, Ascend NPU, and Cambricon MLU. Simply modify the --device parameter to seamlessly switch between different hardware devices.
For example, if you use Ascend NPU for video classification in the pipeline, the Python command used is:
paddlex --pipeline video_classification \
--input general_video_classification_001.mp4 \
--topk 5 \
--save_path ./output \
--device npu:0
Of course, you can also specify the hardware device when calling create_pipeline() or predict() in a Python script.
If you want to use the General Video Classification pipeline on a wider variety of hardware, please refer to the PaddleX Multi-Device Usage Guide.