trainer.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from pathlib import Path
  15. from ..base import BaseTrainer
  16. from ...utils.config import AttrDict
  17. from ...utils import logging
  18. from .model_list import MODELS
  19. class DetTrainer(BaseTrainer):
  20. """Object Detection Model Trainer"""
  21. entities = MODELS
  22. def _update_dataset(self):
  23. """update dataset settings"""
  24. self.pdx_config.update_dataset(self.global_config.dataset_dir, "COCODetDataset")
  25. def update_config(self):
  26. """update training config"""
  27. if self.train_config.log_interval:
  28. self.pdx_config.update_log_interval(self.train_config.log_interval)
  29. if self.train_config.eval_interval:
  30. self.pdx_config.update_eval_interval(self.train_config.eval_interval)
  31. self._update_dataset()
  32. if self.train_config.num_classes is not None:
  33. self.pdx_config.update_num_class(self.train_config.num_classes)
  34. if (
  35. self.train_config.pretrain_weight_path
  36. and self.train_config.pretrain_weight_path != ""
  37. ):
  38. self.pdx_config.update_pretrained_weights(
  39. self.train_config.pretrain_weight_path
  40. )
  41. if self.train_config.batch_size is not None:
  42. self.pdx_config.update_batch_size(self.train_config.batch_size)
  43. if self.train_config.learning_rate is not None:
  44. self.pdx_config.update_learning_rate(self.train_config.learning_rate)
  45. if self.train_config.epochs_iters is not None:
  46. self.pdx_config.update_epochs(self.train_config.epochs_iters)
  47. epochs_iters = self.train_config.epochs_iters
  48. else:
  49. epochs_iters = self.pdx_config.get_epochs_iters()
  50. if self.global_config.output is not None:
  51. self.pdx_config.update_save_dir(self.global_config.output)
  52. if "PicoDet" in self.global_config.model:
  53. assigner_epochs = max(int(epochs_iters / 10), 1)
  54. try:
  55. self.pdx_config.update_static_assigner_epochs(assigner_epochs)
  56. except Exception:
  57. logging.info(
  58. f"The model({self.global_config.model}) don't support to update_static_assigner_epochs!"
  59. )
  60. def get_train_kwargs(self) -> dict:
  61. """get key-value arguments of model training function
  62. Returns:
  63. dict: the arguments of training function.
  64. """
  65. train_args = {"device": self.get_device()}
  66. if (
  67. self.train_config.resume_path is not None
  68. and self.train_config.resume_path != ""
  69. ):
  70. train_args["resume_path"] = self.train_config.resume_path
  71. train_args["dy2st"] = self.train_config.get("dy2st", False)
  72. return train_args