| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- import time
- from pathlib import Path
- import tarfile
- from ..base import BaseTrainer
- from ...utils.config import AttrDict
- from .model_list import MODELS
- class TSADTrainer(BaseTrainer):
- """TS Anomaly Detection Model Trainer"""
- entities = MODELS
- def train(self):
- """firstly, update and dump train config, then train model"""
- # XXX: using super().train() instead when the train_hook() is supported.
- os.makedirs(self.global_config.output, exist_ok=True)
- self.update_config()
- self.dump_config()
- train_result = self.pdx_model.train(**self.get_train_kwargs())
- assert (
- train_result.returncode == 0
- ), f"Encountered an unexpected error({train_result.returncode}) in \
- training!"
- self.make_tar_file()
- def make_tar_file(self):
- """make tar file to package the training outputs"""
- tar_path = Path(self.global_config.output) / "best_accuracy.pdparams.tar"
- with tarfile.open(tar_path, "w") as tar:
- tar.add(self.global_config.output, arcname="best_accuracy.pdparams")
- def update_config(self):
- """update training config"""
- self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSADDataset")
- if self.train_config.input_len is not None:
- self.pdx_config.update_input_len(self.train_config.input_len)
- if self.train_config.time_col is not None:
- self.pdx_config.update_basic_info({"time_col": self.train_config.time_col})
- if self.train_config.feature_cols is not None:
- if isinstance(self.train_config.feature_cols, tuple):
- feature_cols = [str(item) for item in self.train_config.feature_cols]
- self.pdx_config.update_basic_info({"feature_cols": feature_cols})
- else:
- self.pdx_config.update_basic_info(
- {"feature_cols": self.train_config.feature_cols.split(",")}
- )
- if self.train_config.label_col is not None:
- self.pdx_config.update_basic_info(
- {"label_col": self.train_config.label_col}
- )
- if self.train_config.freq is not None:
- try:
- self.train_config.freq = int(self.train_config.freq)
- except ValueError:
- pass
- self.pdx_config.update_basic_info({"freq": self.train_config.freq})
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config.update_epochs(self.train_config.epochs_iters)
- if self.train_config.log_interval is not None:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.global_config.output is not None:
- self.pdx_config.update_save_dir(self.global_config.output)
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- if self.global_config.output is not None:
- train_args["save_dir"] = self.global_config.output
- return train_args
|