classifier.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. from __future__ import absolute_import
  15. import numpy as np
  16. import time
  17. import math
  18. import tqdm
  19. import paddle.fluid as fluid
  20. import paddlex.utils.logging as logging
  21. from paddlex.utils import seconds_to_hms
  22. import paddlex
  23. from collections import OrderedDict
  24. from .base import BaseAPI
  25. class BaseClassifier(BaseAPI):
  26. """构建分类器,并实现其训练、评估、预测和模型导出。
  27. Args:
  28. model_name (str): 分类器的模型名字,取值范围为['ResNet18',
  29. 'ResNet34', 'ResNet50', 'ResNet101',
  30. 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
  31. 'MobileNetV1', 'MobileNetV2', 'Xception41',
  32. 'Xception65', 'Xception71']。默认为'ResNet50'。
  33. num_classes (int): 类别数。默认为1000。
  34. fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
  35. """
  36. def __init__(self, model_name='ResNet50', num_classes=1000, fixed_input_shape=None):
  37. self.init_params = locals()
  38. super(BaseClassifier, self).__init__('classifier')
  39. if not hasattr(paddlex.cv.nets, str.lower(model_name)):
  40. raise Exception(
  41. "ERROR: There's no model named {}.".format(model_name))
  42. self.model_name = model_name
  43. self.labels = None
  44. self.num_classes = num_classes
  45. self.fixed_input_shape = fixed_input_shape
  46. def build_net(self, mode='train'):
  47. if self.fixed_input_shape is not None:
  48. input_shape =[None, 3, self.fixed_input_shape[0], self.fixed_input_shape[1]]
  49. image = fluid.data(
  50. dtype='float32', shape=input_shape, name='image')
  51. else:
  52. image = fluid.data(
  53. dtype='float32', shape=[None, 3, None, None], name='image')
  54. if mode != 'test':
  55. label = fluid.data(dtype='int64', shape=[None, 1], name='label')
  56. model = getattr(paddlex.cv.nets, str.lower(self.model_name))
  57. net_out = model(image, num_classes=self.num_classes)
  58. softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
  59. inputs = OrderedDict([('image', image)])
  60. outputs = OrderedDict([('predict', softmax_out)])
  61. if mode != 'test':
  62. cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
  63. avg_cost = fluid.layers.mean(cost)
  64. acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
  65. k = min(5, self.num_classes)
  66. acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
  67. if mode == 'train':
  68. self.optimizer.minimize(avg_cost)
  69. inputs = OrderedDict([('image', image), ('label', label)])
  70. outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
  71. ('acc{}'.format(k), acck)])
  72. if mode == 'eval':
  73. del outputs['loss']
  74. return inputs, outputs
  75. def default_optimizer(self, learning_rate, lr_decay_epochs, lr_decay_gamma,
  76. num_steps_each_epoch):
  77. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  78. values = [
  79. learning_rate * (lr_decay_gamma**i)
  80. for i in range(len(lr_decay_epochs) + 1)
  81. ]
  82. lr_decay = fluid.layers.piecewise_decay(
  83. boundaries=boundaries, values=values)
  84. optimizer = fluid.optimizer.Momentum(
  85. lr_decay,
  86. momentum=0.9,
  87. regularization=fluid.regularizer.L2Decay(1e-04))
  88. return optimizer
  89. def train(self,
  90. num_epochs,
  91. train_dataset,
  92. train_batch_size=64,
  93. eval_dataset=None,
  94. save_interval_epochs=1,
  95. log_interval_steps=2,
  96. save_dir='output',
  97. pretrain_weights='IMAGENET',
  98. optimizer=None,
  99. learning_rate=0.025,
  100. lr_decay_epochs=[30, 60, 90],
  101. lr_decay_gamma=0.1,
  102. use_vdl=False,
  103. sensitivities_file=None,
  104. eval_metric_loss=0.05):
  105. """训练。
  106. Args:
  107. num_epochs (int): 训练迭代轮数。
  108. train_dataset (paddlex.datasets): 训练数据读取器。
  109. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  110. eval_dataset (paddlex.datasets: 验证数据读取器。
  111. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  112. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  113. save_dir (str): 模型保存路径。
  114. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  115. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  116. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  117. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  118. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  119. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  120. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  121. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  122. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  123. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  124. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  125. Raises:
  126. ValueError: 模型从inference model进行加载。
  127. """
  128. if not self.trainable:
  129. raise ValueError("Model is not trainable from load_model method.")
  130. self.labels = train_dataset.labels
  131. if optimizer is None:
  132. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  133. optimizer = self.default_optimizer(
  134. learning_rate=learning_rate,
  135. lr_decay_epochs=lr_decay_epochs,
  136. lr_decay_gamma=lr_decay_gamma,
  137. num_steps_each_epoch=num_steps_each_epoch)
  138. self.optimizer = optimizer
  139. # 构建训练、验证、预测网络
  140. self.build_program()
  141. # 初始化网络权重
  142. self.net_initialize(
  143. startup_prog=fluid.default_startup_program(),
  144. pretrain_weights=pretrain_weights,
  145. save_dir=save_dir,
  146. sensitivities_file=sensitivities_file,
  147. eval_metric_loss=eval_metric_loss)
  148. # 训练
  149. self.train_loop(
  150. num_epochs=num_epochs,
  151. train_dataset=train_dataset,
  152. train_batch_size=train_batch_size,
  153. eval_dataset=eval_dataset,
  154. save_interval_epochs=save_interval_epochs,
  155. log_interval_steps=log_interval_steps,
  156. save_dir=save_dir,
  157. use_vdl=use_vdl)
  158. def evaluate(self,
  159. eval_dataset,
  160. batch_size=1,
  161. epoch_id=None,
  162. return_details=False):
  163. """评估。
  164. Args:
  165. eval_dataset (paddlex.datasets): 验证数据读取器。
  166. batch_size (int): 验证数据批大小。默认为1。
  167. epoch_id (int): 当前评估模型所在的训练轮数。
  168. return_details (bool): 是否返回详细信息。
  169. Returns:
  170. dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
  171. 分别表示最大值的accuracy、前5个最大值的accuracy。
  172. tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
  173. 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
  174. """
  175. self.arrange_transforms(
  176. transforms=eval_dataset.transforms, mode='eval')
  177. data_generator = eval_dataset.generator(
  178. batch_size=batch_size, drop_last=False)
  179. k = min(5, self.num_classes)
  180. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  181. true_labels = list()
  182. pred_scores = list()
  183. if not hasattr(self, 'parallel_test_prog'):
  184. self.parallel_test_prog = fluid.CompiledProgram(
  185. self.test_prog).with_data_parallel(
  186. share_vars_from=self.parallel_train_prog)
  187. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  188. logging.info(
  189. "Start to evaluating(total_samples={}, total_steps={})...".format(
  190. eval_dataset.num_samples, total_steps))
  191. for step, data in tqdm.tqdm(
  192. enumerate(data_generator()), total=total_steps):
  193. images = np.array([d[0] for d in data]).astype('float32')
  194. labels = [d[1] for d in data]
  195. num_samples = images.shape[0]
  196. if num_samples < batch_size:
  197. num_pad_samples = batch_size - num_samples
  198. pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
  199. images = np.concatenate([images, pad_images])
  200. outputs = self.exe.run(
  201. self.parallel_test_prog,
  202. feed={'image': images},
  203. fetch_list=list(self.test_outputs.values()))
  204. outputs = [outputs[0][:num_samples]]
  205. true_labels.extend(labels)
  206. pred_scores.extend(outputs[0].tolist())
  207. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
  208. epoch_id, step + 1, total_steps))
  209. pred_top1_label = np.argsort(pred_scores)[:, -1]
  210. pred_topk_label = np.argsort(pred_scores)[:, -k:]
  211. acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
  212. acck = sum(
  213. [np.isin(x, y)
  214. for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
  215. metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
  216. if return_details:
  217. eval_details = {
  218. 'true_labels': true_labels,
  219. 'pred_scores': pred_scores
  220. }
  221. return metrics, eval_details
  222. return metrics
  223. def predict(self, img_file, transforms=None, topk=1):
  224. """预测。
  225. Args:
  226. img_file (str): 预测图像路径。
  227. transforms (paddlex.cls.transforms): 数据预处理操作。
  228. topk (int): 预测时前k个最大值。
  229. Returns:
  230. list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  231. 分别对应预测类别id、预测类别标签、预测得分。
  232. """
  233. if transforms is None and not hasattr(self, 'test_transforms'):
  234. raise Exception("transforms need to be defined, now is None.")
  235. true_topk = min(self.num_classes, topk)
  236. if transforms is not None:
  237. self.arrange_transforms(transforms=transforms, mode='test')
  238. im = transforms(img_file)
  239. else:
  240. self.arrange_transforms(
  241. transforms=self.test_transforms, mode='test')
  242. im = self.test_transforms(img_file)
  243. result = self.exe.run(
  244. self.test_prog,
  245. feed={'image': im},
  246. fetch_list=list(self.test_outputs.values()))
  247. pred_label = np.argsort(result[0][0])[::-1][:true_topk]
  248. res = [{
  249. 'category_id': l,
  250. 'category': self.labels[l],
  251. 'score': result[0][0][l]
  252. } for l in pred_label]
  253. return res
  254. class ResNet18(BaseClassifier):
  255. def __init__(self, num_classes=1000):
  256. super(ResNet18, self).__init__(
  257. model_name='ResNet18', num_classes=num_classes)
  258. class ResNet34(BaseClassifier):
  259. def __init__(self, num_classes=1000):
  260. super(ResNet34, self).__init__(
  261. model_name='ResNet34', num_classes=num_classes)
  262. class ResNet50(BaseClassifier):
  263. def __init__(self, num_classes=1000):
  264. super(ResNet50, self).__init__(
  265. model_name='ResNet50', num_classes=num_classes)
  266. class ResNet101(BaseClassifier):
  267. def __init__(self, num_classes=1000):
  268. super(ResNet101, self).__init__(
  269. model_name='ResNet101', num_classes=num_classes)
  270. class ResNet50_vd(BaseClassifier):
  271. def __init__(self, num_classes=1000):
  272. super(ResNet50_vd, self).__init__(
  273. model_name='ResNet50_vd', num_classes=num_classes)
  274. class ResNet101_vd(BaseClassifier):
  275. def __init__(self, num_classes=1000):
  276. super(ResNet101_vd, self).__init__(
  277. model_name='ResNet101_vd', num_classes=num_classes)
  278. class ResNet50_vd_ssld(BaseClassifier):
  279. def __init__(self, num_classes=1000):
  280. super(ResNet50_vd_ssld, self).__init__(
  281. model_name='ResNet50_vd_ssld', num_classes=num_classes)
  282. class ResNet101_vd_ssld(BaseClassifier):
  283. def __init__(self, num_classes=1000):
  284. super(ResNet101_vd_ssld, self).__init__(
  285. model_name='ResNet101_vd_ssld', num_classes=num_classes)
  286. class DarkNet53(BaseClassifier):
  287. def __init__(self, num_classes=1000):
  288. super(DarkNet53, self).__init__(
  289. model_name='DarkNet53', num_classes=num_classes)
  290. class MobileNetV1(BaseClassifier):
  291. def __init__(self, num_classes=1000):
  292. super(MobileNetV1, self).__init__(
  293. model_name='MobileNetV1', num_classes=num_classes)
  294. class MobileNetV2(BaseClassifier):
  295. def __init__(self, num_classes=1000):
  296. super(MobileNetV2, self).__init__(
  297. model_name='MobileNetV2', num_classes=num_classes)
  298. class MobileNetV3_small(BaseClassifier):
  299. def __init__(self, num_classes=1000):
  300. super(MobileNetV3_small, self).__init__(
  301. model_name='MobileNetV3_small', num_classes=num_classes)
  302. class MobileNetV3_large(BaseClassifier):
  303. def __init__(self, num_classes=1000):
  304. super(MobileNetV3_large, self).__init__(
  305. model_name='MobileNetV3_large', num_classes=num_classes)
  306. class MobileNetV3_small_ssld(BaseClassifier):
  307. def __init__(self, num_classes=1000):
  308. super(MobileNetV3_small_ssld, self).__init__(
  309. model_name='MobileNetV3_small_ssld', num_classes=num_classes)
  310. class MobileNetV3_large_ssld(BaseClassifier):
  311. def __init__(self, num_classes=1000):
  312. super(MobileNetV3_large_ssld, self).__init__(
  313. model_name='MobileNetV3_large_ssld', num_classes=num_classes)
  314. class Xception65(BaseClassifier):
  315. def __init__(self, num_classes=1000):
  316. super(Xception65, self).__init__(
  317. model_name='Xception65', num_classes=num_classes)
  318. class Xception41(BaseClassifier):
  319. def __init__(self, num_classes=1000):
  320. super(Xception41, self).__init__(
  321. model_name='Xception41', num_classes=num_classes)
  322. class DenseNet121(BaseClassifier):
  323. def __init__(self, num_classes=1000):
  324. super(DenseNet121, self).__init__(
  325. model_name='DenseNet121', num_classes=num_classes)
  326. class DenseNet161(BaseClassifier):
  327. def __init__(self, num_classes=1000):
  328. super(DenseNet161, self).__init__(
  329. model_name='DenseNet161', num_classes=num_classes)
  330. class DenseNet201(BaseClassifier):
  331. def __init__(self, num_classes=1000):
  332. super(DenseNet201, self).__init__(
  333. model_name='DenseNet201', num_classes=num_classes)
  334. class ShuffleNetV2(BaseClassifier):
  335. def __init__(self, num_classes=1000):
  336. super(ShuffleNetV2, self).__init__(
  337. model_name='ShuffleNetV2', num_classes=num_classes)