| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- from tqdm import tqdm
- from pycocotools.coco import COCO
- from .....utils.errors import ConvertFailedError
- from .....utils.logging import info, warning
- def check_src_dataset(root_dir, dataset_type):
- """check src dataset format validity"""
- if dataset_type in ("COCO"):
- anno_suffix = ".json"
- else:
- raise ConvertFailedError(
- message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。"
- )
- err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。"
- for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]:
- src_anno_path = os.path.join(root_dir, anno)
- if not os.path.exists(src_anno_path):
- raise ConvertFailedError(
- message=f"{err_msg_prefix}保证{src_anno_path}文件存在。"
- )
- return None
- def convert(dataset_type, input_dir):
- """convert dataset to multilabel format"""
- # check format validity
- check_src_dataset(input_dir, dataset_type)
- if dataset_type in ("COCO"):
- convert_coco_dataset(input_dir)
- else:
- raise ConvertFailedError(
- message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 COCO 格式。"
- )
- def convert_coco_dataset(root_dir):
- for anno in ["annotations/instance_train.json", "annotations/instance_val.json"]:
- src_img_dir = root_dir
- src_anno_path = os.path.join(root_dir, anno)
- coco2multilabels(src_img_dir, src_anno_path, root_dir)
- def coco2multilabels(src_img_dir, src_anno_path, root_dir):
- image_dir = os.path.join(root_dir, "images")
- label_type = (
- os.path.basename(src_anno_path).replace("instance_", "").replace(".json", "")
- )
- anno_save_path = os.path.join(root_dir, "{}.txt".format(label_type))
- coco = COCO(src_anno_path)
- cat_id_map = {
- old_cat_id: new_cat_id for new_cat_id, old_cat_id in enumerate(coco.getCatIds())
- }
- num_classes = len(list(cat_id_map.keys()))
- with open(anno_save_path, "w") as fp:
- lines = []
- for img_id in tqdm(sorted(coco.getImgIds())):
- img_info = coco.loadImgs([img_id])[0]
- img_filename = img_info["file_name"]
- img_w = img_info["width"]
- img_h = img_info["height"]
- img_filepath = os.path.join(image_dir, img_filename)
- if not os.path.exists(img_filepath):
- warning(
- "Illegal image file: {}, "
- "and it will be ignored".format(img_filepath)
- )
- continue
- if img_w < 0 or img_h < 0:
- warning(
- "Illegal width: {} or height: {} in annotation, "
- "and im_id: {} will be ignored".format(img_w, img_h, img_id)
- )
- continue
- ins_anno_ids = coco.getAnnIds(imgIds=[img_id])
- instances = coco.loadAnns(ins_anno_ids)
- label = [0] * num_classes
- for instance in instances:
- label[cat_id_map[instance["category_id"]]] = 1
- img_filename = os.path.join("images", img_filename)
- fp.writelines("{}\t{}\n".format(img_filename, ",".join(map(str, label))))
- fp.close()
- if label_type == "train":
- label_txt_save_path = os.path.join(root_dir, "label.txt")
- with open(label_txt_save_path, "w") as fp:
- label_name_list = []
- for cat in coco.cats.values():
- id = cat["id"]
- name = cat["name"]
- fp.writelines("{} {}\n".format(id, name))
- fp.close()
- info("Save label names to {}.".format(label_txt_save_path))
|