trainer.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import shutil
  15. from pathlib import Path
  16. from ..base import BaseTrainer
  17. from .model_list import MODELS
  18. class VideoDetTrainer(BaseTrainer):
  19. """Image Classification Model Trainer"""
  20. entities = MODELS
  21. def dump_label_dict(self, src_label_dict_path: str):
  22. """dump label dict config
  23. Args:
  24. src_label_dict_path (str): path to label dict file to be saved.
  25. """
  26. dst_label_dict_path = Path(self.global_config.output).joinpath("label_map.txt")
  27. shutil.copyfile(src_label_dict_path, dst_label_dict_path)
  28. def update_config(self):
  29. """update training config"""
  30. if self.train_config.log_interval:
  31. self.pdx_config.update_log_interval(self.train_config.log_interval)
  32. if self.train_config.eval_interval:
  33. self.pdx_config.update_eval_interval(self.train_config.eval_interval)
  34. if self.train_config.save_interval:
  35. self.pdx_config.update_save_interval(self.train_config.save_interval)
  36. if self.train_config.num_classes is not None:
  37. self.pdx_config.update_num_classes(self.train_config.num_classes)
  38. self.pdx_config.update_dataset(
  39. self.global_config.dataset_dir, "VideoDetDataset"
  40. )
  41. if self.train_config.pretrain_weight_path != "":
  42. self.pdx_config.update_pretrained_weights(
  43. self.train_config.pretrain_weight_path
  44. )
  45. label_dict_path = Path(self.global_config.dataset_dir).joinpath("label_map.txt")
  46. if label_dict_path.exists():
  47. self.pdx_config.update_label_list(label_dict_path)
  48. if self.train_config.batch_size is not None:
  49. self.pdx_config.update_batch_size(self.train_config.batch_size)
  50. if self.train_config.learning_rate is not None:
  51. self.pdx_config.update_learning_rate(self.train_config.learning_rate)
  52. if self.train_config.epochs_iters is not None:
  53. self.pdx_config._update_epochs(self.train_config.epochs_iters)
  54. if self.global_config.output is not None:
  55. self.pdx_config._update_output_dir(self.global_config.output)
  56. def get_train_kwargs(self) -> dict:
  57. """get key-value arguments of model training function
  58. Returns:
  59. dict: the arguments of training function.
  60. """
  61. train_args = {"device": self.get_device()}
  62. if (
  63. self.train_config.resume_path is not None
  64. and self.train_config.resume_path != ""
  65. ):
  66. train_args["resume_path"] = self.train_config.resume_path
  67. train_args["dy2st"] = self.train_config.get("dy2st", False)
  68. # amp support 'O1', 'O2', 'OFF'
  69. train_args["amp"] = self.train_config.get("amp", "OFF")
  70. return train_args