train_rcnn.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. from paddlex.det import transforms
  6. import paddlex as pdx
  7. # 下载和解压铝材缺陷检测数据集
  8. aluminum_dataset = 'https://bj.bcebos.com/paddlex/examples/industrial_quality_inspection/datasets/aluminum_inspection.tar.gz'
  9. pdx.utils.download_and_decompress(aluminum_dataset, path='./')
  10. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
  11. train_transforms = transforms.Compose([
  12. transforms.RandomDistort(), transforms.RandomCrop(),
  13. transforms.RandomHorizontalFlip(), transforms.ResizeByShort(
  14. short_size=[800], max_size=1333), transforms.Normalize(
  15. mean=[0.5], std=[0.5]), transforms.Padding(coarsest_stride=32)
  16. ])
  17. eval_transforms = transforms.Compose([
  18. transforms.ResizeByShort(
  19. short_size=800, max_size=1333),
  20. transforms.Normalize(),
  21. transforms.Padding(coarsest_stride=32),
  22. ])
  23. # 定义训练和验证所用的数据集
  24. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
  25. train_dataset = pdx.datasets.VOCDetection(
  26. data_dir='aluminum_inspection',
  27. file_list='aluminum_inspection/train_list.txt',
  28. label_list='aluminum_inspection/labels.txt',
  29. transforms=train_transforms,
  30. num_workers=8,
  31. shuffle=True)
  32. eval_dataset = pdx.datasets.VOCDetection(
  33. data_dir='aluminum_inspection',
  34. file_list='aluminum_inspection/val_list.txt',
  35. label_list='aluminum_inspection/labels.txt',
  36. num_workers=8,
  37. transforms=eval_transforms)
  38. # 把背景图片加入训练集中
  39. train_dataset.add_negative_samples(
  40. image_dir='./aluminum_inspection/train_wu_xia_ci')
  41. # 初始化模型,并进行训练
  42. # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
  43. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  44. num_classes = len(train_dataset.labels) + 1
  45. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-fasterrcnn
  46. model = pdx.det.FasterRCNN(
  47. num_classes=num_classes,
  48. backbone='ResNet50_vd_ssld',
  49. with_dcn=True,
  50. fpn_num_channels=64,
  51. with_fpn=True,
  52. test_pre_nms_top_n=500,
  53. test_post_nms_top_n=300)
  54. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#id1
  55. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  56. model.train(
  57. num_epochs=80,
  58. train_dataset=train_dataset,
  59. train_batch_size=2,
  60. eval_dataset=eval_dataset,
  61. learning_rate=0.0025,
  62. lr_decay_epochs=[60, 70],
  63. warmup_steps=5000,
  64. save_dir='output/faster_rcnn_r50_vd_dcn',
  65. use_vdl=True)