| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from six import text_type as _text_type
- import argparse
- import sys
- import os
- import os.path as osp
- import paddlex.utils.logging as logging
- def arg_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir",
- "-m",
- type=_text_type,
- default=None,
- help="define model directory path")
- parser.add_argument(
- "--save_dir",
- "-s",
- type=_text_type,
- default=None,
- help="path to save inference model")
- parser.add_argument(
- "--version",
- "-v",
- action="store_true",
- default=False,
- help="get version of PaddleX")
- parser.add_argument(
- "--export_inference",
- "-e",
- action="store_true",
- default=False,
- help="export inference model for C++/Python deployment")
- parser.add_argument(
- "--export_onnx",
- "-eo",
- action="store_true",
- default=False,
- help="export onnx model for deployment")
- parser.add_argument(
- "--onnx_opset",
- "-oo",
- type=int,
- default=10,
- help="when use paddle2onnx, set onnx opset version to export")
- parser.add_argument(
- "--data_conversion",
- "-dc",
- action="store_true",
- default=False,
- help="convert the dataset to the standard format")
- parser.add_argument(
- "--source",
- "-se",
- type=_text_type,
- default=None,
- help="define dataset format before the conversion")
- parser.add_argument(
- "--to",
- "-to",
- type=_text_type,
- default=None,
- help="define dataset format after the conversion")
- parser.add_argument(
- "--pics",
- "-p",
- type=_text_type,
- default=None,
- help="define pictures directory path")
- parser.add_argument(
- "--annotations",
- "-a",
- type=_text_type,
- default=None,
- help="define annotations directory path")
- parser.add_argument(
- "--fixed_input_shape",
- "-fs",
- default=None,
- help="export inference model with fixed input shape:[w,h]")
- parser.add_argument(
- "--split_dataset",
- "-sd",
- action="store_true",
- default=False,
- help="split dataset with the split value")
- parser.add_argument(
- "--format",
- "-f",
- default=None,
- help="define dataset format(ImageNet/COCO/VOC/Seg)")
- parser.add_argument(
- "--dataset_dir",
- "-dd",
- type=_text_type,
- default=None,
- help="define the path of dataset to be splited")
- parser.add_argument(
- "--val_value",
- "-vv",
- default=None,
- help="define the value of validation dataset(E.g 0.2)")
- parser.add_argument(
- "--test_value",
- "-tv",
- default=None,
- help="define the value of test dataset(E.g 0.1)")
- return parser
- def main():
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = ""
- import paddlex as pdx
- if len(sys.argv) < 2:
- print("Use command 'paddlex -h` to print the help information\n")
- return
- parser = arg_parser()
- args = parser.parse_args()
- if args.version:
- print("PaddleX-{}".format(pdx.__version__))
- print("Repo: https://github.com/PaddlePaddle/PaddleX.git")
- print("Email: paddlex@baidu.com")
- return
- if args.export_inference:
- assert args.model_dir is not None, "--model_dir should be defined while exporting inference model"
- assert args.save_dir is not None, "--save_dir should be defined to save inference model"
- fixed_input_shape = None
- if args.fixed_input_shape is not None:
- fixed_input_shape = eval(args.fixed_input_shape)
- assert len(
- fixed_input_shape
- ) == 2, "len of fixed input shape must == 2, such as [224,224]"
- else:
- fixed_input_shape = None
- model = pdx.load_model(args.model_dir, fixed_input_shape)
- model.export_inference_model(args.save_dir)
- if args.export_onnx:
- assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model"
- assert args.save_dir is not None, "--save_dir should be defined to create onnx model"
- model = pdx.load_model(args.model_dir)
- if model.status == "Normal" or model.status == "Prune":
- logging.error(
- "Only support inference model, try to export model first as below,",
- exit=False)
- logging.error(
- "paddlex --export_inference --model_dir model_path --save_dir infer_model"
- )
- save_file = os.path.join(args.save_dir, 'paddle2onnx_model.onnx')
- pdx.converter.export_onnx_model(model, save_file, args.onnx_opset)
- if args.data_conversion:
- assert args.source is not None, "--source should be defined while converting dataset"
- assert args.to is not None, "--to should be defined to confirm the taregt dataset format"
- assert args.pics is not None, "--pics should be defined to confirm the pictures path"
- assert args.annotations is not None, "--annotations should be defined to confirm the annotations path"
- assert args.save_dir is not None, "--save_dir should be defined to store taregt dataset"
- if args.source not in ['labelme', 'jingling', 'easydata']:
- logging.error(
- "The source format {} is not one of labelme/jingling/easydata".
- format(args.source),
- exit=False)
- if args.to not in ['PascalVOC', 'MSCOCO', 'SEG', 'ImageNet']:
- logging.error(
- "The to format {} is not one of PascalVOC/MSCOCO/SEG/ImageNet".
- format(args.to),
- exit=False)
- if args.source == 'labelme' and args.to == 'ImageNet':
- logging.error(
- "The labelme dataset can not convert to the ImageNet dataset.",
- exit=False)
- if args.source == 'jingling' and args.to == 'PascalVOC':
- logging.error(
- "The jingling dataset can not convert to the PascalVOC dataset.",
- exit=False)
- if not osp.exists(args.save_dir):
- os.makedirs(args.save_dir)
- pdx.tools.convert.dataset_conversion(args.source, args.to, args.pics,
- args.annotations, args.save_dir)
- if args.split_dataset:
- assert args.dataset_dir is not None, "--dataset_dir should be defined while spliting dataset"
- assert args.format is not None, "--format should be defined while spliting dataset"
- assert args.val_value is not None, "--val_value should be defined while spliting dataset"
- dataset_dir = args.dataset_dir
- dataset_format = args.format.lower()
- val_value = float(args.val_value)
- test_value = float(args.test_value
- if args.test_value is not None else 0)
- save_dir = dataset_dir
- if not dataset_format in ["coco", "imagenet", "voc", "seg"]:
- logging.error(
- "The dataset format is not correct defined.(support COCO/ImageNet/VOC/Seg)"
- )
- if not osp.exists(dataset_dir):
- logging.error("The path of dataset to be splited doesn't exist.")
- if val_value <= 0 or val_value >= 1 or test_value < 0 or test_value >= 1 or val_value + test_value >= 1:
- logging.error("The value of split is not correct.")
- pdx.tools.split.dataset_split(dataset_dir, dataset_format, val_value,
- test_value, save_dir)
-
- if __name__ == "__main__":
- main()
|