| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import copy
- import os
- import os.path as osp
- import random
- import re
- import numpy as np
- from collections import OrderedDict
- import xml.etree.ElementTree as ET
- import paddlex.utils.logging as logging
- from paddlex.utils import path_normalization
- from .dataset import Dataset
- from .dataset import is_pic
- from .dataset import get_encoding
- class VOCDetection(Dataset):
- """读取PascalVOC格式的检测数据集,并对样本进行相应的处理。
- Args:
- data_dir (str): 数据集所在的目录路径。
- file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
- label_list (str): 描述数据集包含的类别信息文件路径。
- transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
- 一半。
- buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
- parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
- 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- """
- def __init__(self,
- data_dir,
- file_list,
- label_list,
- transforms=None,
- num_workers='auto',
- buffer_size=100,
- parallel_method='process',
- shuffle=False):
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- super(VOCDetection, self).__init__(
- transforms=transforms,
- num_workers=num_workers,
- buffer_size=buffer_size,
- parallel_method=parallel_method,
- shuffle=shuffle)
- self.file_list = list()
- self.labels = list()
- self._epoch = 0
- annotations = {}
- annotations['images'] = []
- annotations['categories'] = []
- annotations['annotations'] = []
- cname2cid = OrderedDict()
- label_id = 1
- with open(label_list, 'r', encoding=get_encoding(label_list)) as fr:
- for line in fr.readlines():
- cname2cid[line.strip()] = label_id
- label_id += 1
- self.labels.append(line.strip())
- logging.info("Starting to read file list from dataset...")
- for k, v in cname2cid.items():
- annotations['categories'].append({
- 'supercategory': 'component',
- 'id': v,
- 'name': k
- })
- ct = 0
- ann_ct = 0
- with open(file_list, 'r', encoding=get_encoding(file_list)) as fr:
- while True:
- line = fr.readline()
- if not line:
- break
- if len(line.strip().split()) > 2:
- raise Exception(
- "A space is defined as the separator, but it exists in image or label name {}."
- .format(line))
- img_file, xml_file = [osp.join(data_dir, x) \
- for x in line.strip().split()[:2]]
- img_file = path_normalization(img_file)
- xml_file = path_normalization(xml_file)
- if not is_pic(img_file):
- continue
- if not osp.isfile(xml_file):
- continue
- if not osp.exists(img_file):
- logging.warning('The image file {} is not exist!'.format(
- img_file))
- continue
- if not osp.exists(xml_file):
- logging.warning('The annotation file {} is not exist!'.
- format(xml_file))
- continue
- tree = ET.parse(xml_file)
- if tree.find('id') is None:
- im_id = np.array([ct])
- else:
- ct = int(tree.find('id').text)
- im_id = np.array([int(tree.find('id').text)])
- pattern = re.compile('<object>', re.IGNORECASE)
- obj_match = pattern.findall(
- str(ET.tostringlist(tree.getroot())))
- if len(obj_match) == 0:
- continue
- obj_tag = obj_match[0][1:-1]
- objs = tree.findall(obj_tag)
- pattern = re.compile('<size>', re.IGNORECASE)
- size_tag = pattern.findall(
- str(ET.tostringlist(tree.getroot())))
- if len(size_tag) > 0:
- size_tag = size_tag[0][1:-1]
- size_element = tree.find(size_tag)
- pattern = re.compile('<width>', re.IGNORECASE)
- width_tag = pattern.findall(
- str(ET.tostringlist(size_element)))[0][1:-1]
- im_w = float(size_element.find(width_tag).text)
- pattern = re.compile('<height>', re.IGNORECASE)
- height_tag = pattern.findall(
- str(ET.tostringlist(size_element)))[0][1:-1]
- im_h = float(size_element.find(height_tag).text)
- else:
- im_w = 0
- im_h = 0
- gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
- gt_class = np.zeros((len(objs), 1), dtype=np.int32)
- gt_score = np.ones((len(objs), 1), dtype=np.float32)
- is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
- difficult = np.zeros((len(objs), 1), dtype=np.int32)
- for i, obj in enumerate(objs):
- pattern = re.compile('<name>', re.IGNORECASE)
- name_tag = pattern.findall(str(ET.tostringlist(obj)))[0][
- 1:-1]
- cname = obj.find(name_tag).text.strip()
- gt_class[i][0] = cname2cid[cname]
- pattern = re.compile('<difficult>', re.IGNORECASE)
- diff_tag = pattern.findall(str(ET.tostringlist(obj)))
- if len(diff_tag) == 0:
- _difficult = 0
- else:
- diff_tag = diff_tag[0][1:-1]
- try:
- _difficult = int(obj.find(diff_tag).text)
- except Exception:
- _difficult = 0
- pattern = re.compile('<bndbox>', re.IGNORECASE)
- box_tag = pattern.findall(str(ET.tostringlist(obj)))
- if len(box_tag) == 0:
- logging.warning(
- "There's no field '<bndbox>' in one of object, so this object will be ignored. xml file: {}".
- format(xml_file))
- continue
- box_tag = box_tag[0][1:-1]
- box_element = obj.find(box_tag)
- pattern = re.compile('<xmin>', re.IGNORECASE)
- xmin_tag = pattern.findall(
- str(ET.tostringlist(box_element)))[0][1:-1]
- x1 = float(box_element.find(xmin_tag).text)
- pattern = re.compile('<ymin>', re.IGNORECASE)
- ymin_tag = pattern.findall(
- str(ET.tostringlist(box_element)))[0][1:-1]
- y1 = float(box_element.find(ymin_tag).text)
- pattern = re.compile('<xmax>', re.IGNORECASE)
- xmax_tag = pattern.findall(
- str(ET.tostringlist(box_element)))[0][1:-1]
- x2 = float(box_element.find(xmax_tag).text)
- pattern = re.compile('<ymax>', re.IGNORECASE)
- ymax_tag = pattern.findall(
- str(ET.tostringlist(box_element)))[0][1:-1]
- y2 = float(box_element.find(ymax_tag).text)
- x1 = max(0, x1)
- y1 = max(0, y1)
- if im_w > 0.5 and im_h > 0.5:
- x2 = min(im_w - 1, x2)
- y2 = min(im_h - 1, y2)
- gt_bbox[i] = [x1, y1, x2, y2]
- is_crowd[i][0] = 0
- difficult[i][0] = _difficult
- annotations['annotations'].append({
- 'iscrowd': 0,
- 'image_id': int(im_id[0]),
- 'bbox': [x1, y1, x2 - x1 + 1, y2 - y1 + 1],
- 'area': float((x2 - x1 + 1) * (y2 - y1 + 1)),
- 'category_id': cname2cid[cname],
- 'id': ann_ct,
- 'difficult': _difficult
- })
- ann_ct += 1
- im_info = {
- 'im_id': im_id,
- 'image_shape': np.array([im_h, im_w]).astype('int32'),
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'gt_poly': [],
- 'difficult': difficult
- }
- voc_rec = (im_info, label_info)
- if len(objs) != 0:
- self.file_list.append([img_file, voc_rec])
- ct += 1
- annotations['images'].append({
- 'height': im_h,
- 'width': im_w,
- 'id': int(im_id[0]),
- 'file_name': osp.split(img_file)[1]
- })
- if not len(self.file_list) > 0:
- raise Exception('not found any voc record in %s' % (file_list))
- logging.info("{} samples in file {}".format(
- len(self.file_list), file_list))
- self.num_samples = len(self.file_list)
- self.coco_gt = COCO()
- self.coco_gt.dataset = annotations
- self.coco_gt.createIndex()
- def add_negative_samples(self, image_dir):
- """将背景图片加入训练
- Args:
- image_dir (str):背景图片所在的文件夹目录。
- """
- import cv2
- if not osp.exists(image_dir):
- raise Exception("{} background images directory does not exist.".
- format(image_dir))
- image_list = os.listdir(image_dir)
- max_img_id = max(self.coco_gt.getImgIds())
- for image in image_list:
- if not is_pic(image):
- continue
- # False ground truth
- gt_bbox = np.array([[0, 0, 1e-05, 1e-05]], dtype=np.float32)
- gt_class = np.array([[0]], dtype=np.int32)
- gt_score = np.ones((1, 1), dtype=np.float32)
- is_crowd = np.array([[0]], dtype=np.int32)
- difficult = np.zeros((1, 1), dtype=np.int32)
- gt_poly = [[[0, 0, 0, 1e-05, 1e-05, 1e-05, 1e-05, 0]]]
- max_img_id += 1
- im_fname = osp.join(image_dir, image)
- img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
- im_h, im_w, im_c = img_data.shape
- im_info = {
- 'im_id': np.array([max_img_id]).astype('int32'),
- 'image_shape': np.array([im_h, im_w]).astype('int32'),
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'difficult': difficult,
- 'gt_poly': gt_poly
- }
- coco_rec = (im_info, label_info)
- self.file_list.append([im_fname, coco_rec])
- self.num_samples = len(self.file_list)
- def iterator(self):
- self._epoch += 1
- self._pos = 0
- files = copy.deepcopy(self.file_list)
- if self.shuffle:
- random.shuffle(files)
- files = files[:self.num_samples]
- self.num_samples = len(files)
- for f in files:
- records = f[1]
- im_info = copy.deepcopy(records[0])
- label_info = copy.deepcopy(records[1])
- im_info['epoch'] = self._epoch
- if self.num_samples > 1:
- mix_idx = random.randint(1, self.num_samples - 1)
- mix_pos = (mix_idx + self._pos) % self.num_samples
- else:
- mix_pos = 0
- im_info['mixup'] = [
- files[mix_pos][0], copy.deepcopy(files[mix_pos][1][0]),
- copy.deepcopy(files[mix_pos][1][1])
- ]
- self._pos += 1
- sample = [f[0], im_info, label_info]
- yield sample
|