text_detection.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from functools import partial, wraps
  16. from ...modules.text_detection.model_list import MODELS
  17. from ..components import *
  18. from .base import BasePredictor
  19. def register(register_map, key):
  20. """register the option setting func"""
  21. def decorator(func):
  22. register_map[key] = func
  23. @wraps(func)
  24. def wrapper(self, *args, **kwargs):
  25. return func(self, *args, **kwargs)
  26. return wrapper
  27. return decorator
  28. class TextDetPredictor(BasePredictor):
  29. entities = MODELS
  30. INPUT_KEYS = "x"
  31. OUTPUT_KEYS = "text_det_res"
  32. DEAULT_INPUTS = {"x": "x"}
  33. DEAULT_OUTPUTS = {"text_det_res": "text_det_res"}
  34. _REGISTER_MAP = {}
  35. register2self = partial(register, _REGISTER_MAP)
  36. def _build_components(self):
  37. ops = {}
  38. for cfg in self.config["PreProcess"]["transform_ops"]:
  39. tf_key = list(cfg.keys())[0]
  40. func = self._REGISTER_MAP.get(tf_key)
  41. args = cfg.get(tf_key, {})
  42. op = func(self, **args) if args else func(self)
  43. if op:
  44. ops[tf_key] = op
  45. kernel_option = PaddlePredictorOption()
  46. # kernel_option.set_device(self.device)
  47. predictor = ImagePredictor(
  48. model_dir=self.model_dir,
  49. model_prefix=self.MODEL_FILE_PREFIX,
  50. option=kernel_option,
  51. )
  52. predictor.set_inputs({"imgs": "img"})
  53. ops["predictor"] = predictor
  54. key, op = self.build_postprocess(**self.config["PostProcess"])
  55. ops[key] = op
  56. return ops
  57. @register2self("DecodeImage")
  58. def build_readimg(self, channel_first, img_mode):
  59. assert channel_first == False
  60. return ReadImage(format=img_mode, batch_size=self.kwargs.get("batch_size", 1))
  61. @register2self("DetResizeForTest")
  62. def build_resize(self, resize_long=960):
  63. return DetResizeForTest(limit_side_len=resize_long, limit_type="max")
  64. @register2self("NormalizeImage")
  65. def build_normalize(
  66. self,
  67. mean=[0.485, 0.456, 0.406],
  68. std=[0.229, 0.224, 0.225],
  69. scale=1 / 255,
  70. order="",
  71. channel_num=3,
  72. ):
  73. return NormalizeImage(
  74. mean=mean, std=std, scale=scale, order=order, channel_num=channel_num
  75. )
  76. @register2self("ToCHWImage")
  77. def build_to_chw(self):
  78. return ToCHWImage()
  79. def build_postprocess(self, **kwargs):
  80. if kwargs.get("name") == "DBPostProcess":
  81. return "DBPostProcess", DBPostProcess(
  82. thresh=kwargs.get("thresh", 0.3),
  83. box_thresh=kwargs.get("box_thresh", 0.7),
  84. max_candidates=kwargs.get("max_candidates", 1000),
  85. unclip_ratio=kwargs.get("unclip_ratio", 2.0),
  86. use_dilation=kwargs.get("use_dilation", False),
  87. score_mode=kwargs.get("score_mode", "fast"),
  88. box_type=kwargs.get("box_type", "quad"),
  89. )
  90. else:
  91. raise Exception()
  92. @register2self("DetLabelEncode")
  93. def foo(self, *args, **kwargs):
  94. return None
  95. @register2self("KeepKeys")
  96. def foo(self, *args, **kwargs):
  97. return None