mobilenetv3_small_ssld.py 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. import os
  2. from paddlex.cls import transforms
  3. import paddlex as pdx
  4. # 下载和解压蔬菜分类数据集
  5. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  6. pdx.utils.download_and_decompress(veg_dataset, path='./')
  7. # 定义训练和验证时的transforms
  8. train_transforms = transforms.Compose([
  9. transforms.RandomCrop(crop_size=224), transforms.RandomHorizontalFlip(),
  10. transforms.Normalize()
  11. ])
  12. eval_transforms = transforms.Compose([
  13. transforms.ResizeByShort(short_size=256),
  14. transforms.CenterCrop(crop_size=224), transforms.Normalize()
  15. ])
  16. # 定义训练和验证所用的数据集
  17. train_dataset = pdx.datasets.ImageNet(
  18. data_dir='vegetables_cls',
  19. file_list='vegetables_cls/train_list.txt',
  20. label_list='vegetables_cls/labels.txt',
  21. transforms=train_transforms,
  22. shuffle=True)
  23. eval_dataset = pdx.datasets.ImageNet(
  24. data_dir='vegetables_cls',
  25. file_list='vegetables_cls/val_list.txt',
  26. label_list='vegetables_cls/labels.txt',
  27. transforms=eval_transforms)
  28. # 初始化模型,并进行训练
  29. # 可使用VisualDL查看训练指标
  30. # VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
  31. # 浏览器打开 https://0.0.0.0:8001即可
  32. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  33. model = pdx.cls.MobileNetV3_small_ssld(num_classes=len(train_dataset.labels))
  34. model.train(
  35. num_epochs=10,
  36. train_dataset=train_dataset,
  37. train_batch_size=32,
  38. eval_dataset=eval_dataset,
  39. lr_decay_epochs=[4, 6, 8],
  40. learning_rate=0.025,
  41. save_dir='output/mobilenetv3_small_ssld',
  42. use_vdl=True)