| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import tempfile
- from pathlib import Path
- from copy import deepcopy
- import numpy as np
- import cv2
- from .....utils.cache import CACHE_DIR
- from ....utils.io import ImageReader, ImageWriter, PDFReader
- from ...utils.mixin import BatchSizeMixin
- from ...base import BaseComponent
- from ..read_data import _BaseRead
- from . import funcs as F
- __all__ = [
- "ReadImage",
- "Flip",
- "Crop",
- "Resize",
- "ResizeByLong",
- "ResizeByShort",
- "Pad",
- "Normalize",
- "ToCHWImage",
- "PadStride",
- ]
- def _check_image_size(input_):
- """check image size"""
- if not (
- isinstance(input_, (list, tuple))
- and len(input_) == 2
- and isinstance(input_[0], int)
- and isinstance(input_[1], int)
- ):
- raise TypeError(f"{input_} cannot represent a valid image size.")
- class ReadImage(_BaseRead):
- """Load image from the file."""
- INPUT_KEYS = ["img"]
- OUTPUT_KEYS = ["img", "img_size", "ori_img", "ori_img_size"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {
- "img": "img",
- "input_path": "input_path",
- "img_size": "img_size",
- "ori_img": "ori_img",
- "ori_img_size": "ori_img_size",
- }
- _FLAGS_DICT = {
- "BGR": cv2.IMREAD_COLOR,
- "RGB": cv2.IMREAD_COLOR,
- "GRAY": cv2.IMREAD_GRAYSCALE,
- }
- SUFFIX = ["jpg", "png", "jpeg", "JPEG", "JPG", "bmp", "PDF", "pdf"]
- def __init__(self, batch_size=1, format="BGR"):
- """
- Initialize the instance.
- Args:
- format (str, optional): Target color format to convert the image to.
- Choices are 'BGR', 'RGB', and 'GRAY'. Default: 'BGR'.
- """
- super().__init__(batch_size)
- self.format = format
- flags = self._FLAGS_DICT[self.format]
- self._img_reader = ImageReader(backend="opencv", flags=flags)
- self._pdf_reader = PDFReader()
- self._writer = ImageWriter(backend="opencv")
- def apply(self, img):
- """apply"""
- if not isinstance(img, str):
- with tempfile.NamedTemporaryFile(suffix=".png", delete=True) as temp_file:
- img_path = Path(temp_file.name)
- self._writer.write(img_path, img)
- yield [
- {
- "input_path": img_path,
- "img": img,
- "img_size": [img.shape[1], img.shape[0]],
- "ori_img": deepcopy(img),
- "ori_img_size": deepcopy([img.shape[1], img.shape[0]]),
- }
- ]
- else:
- file_path = img
- file_path = self._download_from_url(file_path)
- file_list = self._get_files_list(file_path)
- batch = []
- for file_path in file_list:
- img = self._read_img(file_path)
- batch.extend(img)
- if len(batch) >= self.batch_size:
- yield batch
- batch = []
- if len(batch) > 0:
- yield batch
- def _read(self, file_path):
- if file_path:
- return self._read_pdf(file_path)
- else:
- return self._read_img(file_path)
- def _read_img(self, img_path):
- blob = self._img_reader.read(img_path)
- if blob is None:
- raise Exception("Image read Error")
- if self.format == "RGB":
- if blob.ndim != 3:
- raise RuntimeError("Array is not 3-dimensional.")
- # BGR to RGB
- blob = blob[..., ::-1]
- return [
- {
- "input_path": img_path,
- "img": blob,
- "img_size": [blob.shape[1], blob.shape[0]],
- "ori_img": deepcopy(blob),
- "ori_img_size": deepcopy([blob.shape[1], blob.shape[0]]),
- }
- ]
- def _read_pdf(self, pdf_path):
- img_list = self._pdf_reader.read(pdf_path)
- return [
- {
- "input_path": pdf_path,
- "img": img,
- "img_size": [img.shape[1], img.shape[0]],
- "ori_img": deepcopy(img),
- "ori_img_size": deepcopy([img.shape[1], img.shape[0]]),
- }
- for img in img_list
- ]
- class GetImageInfo(BaseComponent):
- """Get Image Info"""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img_size"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img_size": "img_size"}
- def __init__(self):
- super().__init__()
- def apply(self, img):
- """apply"""
- return {"img_size": [img.shape[1], img.shape[0]]}
- class Flip(BaseComponent):
- """Flip the image vertically or horizontally."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img"}
- def __init__(self, mode="H"):
- """
- Initialize the instance.
- Args:
- mode (str, optional): 'H' for horizontal flipping and 'V' for vertical
- flipping. Default: 'H'.
- """
- super().__init__()
- if mode not in ("H", "V"):
- raise ValueError("`mode` should be 'H' or 'V'.")
- self.mode = mode
- def apply(self, img):
- """apply"""
- if self.mode == "H":
- img = F.flip_h(img)
- elif self.mode == "V":
- img = F.flip_v(img)
- return {"img": img}
- class Crop(BaseComponent):
- """Crop region from the image."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = ["img", "img_size"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
- def __init__(self, crop_size, mode="C"):
- """
- Initialize the instance.
- Args:
- crop_size (list|tuple|int): Width and height of the region to crop.
- mode (str, optional): 'C' for cropping the center part and 'TL' for
- cropping the top left part. Default: 'C'.
- """
- super().__init__()
- if isinstance(crop_size, int):
- crop_size = [crop_size, crop_size]
- _check_image_size(crop_size)
- self.crop_size = crop_size
- if mode not in ("C", "TL"):
- raise ValueError("Unsupported interpolation method")
- self.mode = mode
- def apply(self, img):
- """apply"""
- h, w = img.shape[:2]
- cw, ch = self.crop_size
- if self.mode == "C":
- x1 = max(0, (w - cw) // 2)
- y1 = max(0, (h - ch) // 2)
- elif self.mode == "TL":
- x1, y1 = 0, 0
- x2 = min(w, x1 + cw)
- y2 = min(h, y1 + ch)
- coords = (x1, y1, x2, y2)
- if coords == (0, 0, w, h):
- raise ValueError(
- f"Input image ({w}, {h}) smaller than the target size ({cw}, {ch})."
- )
- img = F.slice(img, coords=coords)
- return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
- class _BaseResize(BaseComponent):
- _INTERP_DICT = {
- "NEAREST": cv2.INTER_NEAREST,
- "LINEAR": cv2.INTER_LINEAR,
- "CUBIC": cv2.INTER_CUBIC,
- "AREA": cv2.INTER_AREA,
- "LANCZOS4": cv2.INTER_LANCZOS4,
- }
- def __init__(self, size_divisor, interp):
- super().__init__()
- if size_divisor is not None:
- assert isinstance(
- size_divisor, int
- ), "`size_divisor` should be None or int."
- self.size_divisor = size_divisor
- try:
- interp = self._INTERP_DICT[interp]
- except KeyError:
- raise ValueError(
- "`interp` should be one of {}.".format(self._INTERP_DICT.keys())
- )
- self.interp = interp
- @staticmethod
- def _rescale_size(img_size, target_size):
- """rescale size"""
- scale = min(max(target_size) / max(img_size), min(target_size) / min(img_size))
- rescaled_size = [round(i * scale) for i in img_size]
- return rescaled_size, scale
- class Resize(_BaseResize):
- """Resize the image."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = ["img", "img_size", "scale_factors"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {
- "img": "img",
- "img_size": "img_size",
- "scale_factors": "scale_factors",
- }
- def __init__(
- self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
- ):
- """
- Initialize the instance.
- Args:
- target_size (list|tuple|int): Target width and height.
- keep_ratio (bool, optional): Whether to keep the aspect ratio of resized
- image. Default: False.
- size_divisor (int|None, optional): Divisor of resized image size.
- Default: None.
- interp (str, optional): Interpolation method. Choices are 'NEAREST',
- 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
- """
- super().__init__(size_divisor=size_divisor, interp=interp)
- if isinstance(target_size, int):
- target_size = [target_size, target_size]
- _check_image_size(target_size)
- self.target_size = target_size
- self.keep_ratio = keep_ratio
- def apply(self, img):
- """apply"""
- target_size = self.target_size
- original_size = img.shape[:2]
- if self.keep_ratio:
- h, w = img.shape[0:2]
- target_size, _ = self._rescale_size((h, w), self.target_size)
- if self.size_divisor:
- target_size = [
- math.ceil(i / self.size_divisor) * self.size_divisor
- for i in target_size
- ]
- img_scale_w, img_scale_h = [
- target_size[1] / original_size[1],
- target_size[0] / original_size[0],
- ]
- img = F.resize(img, target_size, interp=self.interp)
- return {
- "img": img,
- "img_size": [img.shape[1], img.shape[0]],
- "scale_factors": [img_scale_w, img_scale_h],
- }
- class ResizeByLong(_BaseResize):
- """
- Proportionally resize the image by specifying the target length of the
- longest side.
- """
- INPUT_KEYS = "img"
- OUTPUT_KEYS = ["img", "img_size"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
- def __init__(self, target_long_edge, size_divisor=None, interp="LINEAR"):
- """
- Initialize the instance.
- Args:
- target_long_edge (int): Target length of the longest side of image.
- size_divisor (int|None, optional): Divisor of resized image size.
- Default: None.
- interp (str, optional): Interpolation method. Choices are 'NEAREST',
- 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
- """
- super().__init__(size_divisor=size_divisor, interp=interp)
- self.target_long_edge = target_long_edge
- def apply(self, img):
- """apply"""
- h, w = img.shape[:2]
- scale = self.target_long_edge / max(h, w)
- h_resize = round(h * scale)
- w_resize = round(w * scale)
- if self.size_divisor is not None:
- h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor
- w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor
- img = F.resize(img, (w_resize, h_resize), interp=self.interp)
- return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
- class ResizeByShort(_BaseResize):
- """
- Proportionally resize the image by specifying the target length of the
- shortest side.
- """
- INPUT_KEYS = "img"
- OUTPUT_KEYS = ["img", "img_size"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
- def __init__(self, target_short_edge, size_divisor=None, interp="LINEAR"):
- """
- Initialize the instance.
- Args:
- target_short_edge (int): Target length of the shortest side of image.
- size_divisor (int|None, optional): Divisor of resized image size.
- Default: None.
- interp (str, optional): Interpolation method. Choices are 'NEAREST',
- 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
- """
- super().__init__(size_divisor=size_divisor, interp=interp)
- self.target_short_edge = target_short_edge
- def apply(self, img):
- """apply"""
- h, w = img.shape[:2]
- scale = self.target_short_edge / min(h, w)
- h_resize = round(h * scale)
- w_resize = round(w * scale)
- if self.size_divisor is not None:
- h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor
- w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor
- img = F.resize(img, (w_resize, h_resize), interp=self.interp)
- return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
- class Pad(BaseComponent):
- """Pad the image."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = ["img", "img_size"]
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
- def __init__(self, target_size, val=127.5):
- """
- Initialize the instance.
- Args:
- target_size (list|tuple|int): Target width and height of the image after
- padding.
- val (float, optional): Value to fill the padded area. Default: 127.5.
- """
- super().__init__()
- if isinstance(target_size, int):
- target_size = [target_size, target_size]
- _check_image_size(target_size)
- self.target_size = target_size
- self.val = val
- def apply(self, img):
- """apply"""
- h, w = img.shape[:2]
- tw, th = self.target_size
- ph = th - h
- pw = tw - w
- if ph < 0 or pw < 0:
- raise ValueError(
- f"Input image ({w}, {h}) smaller than the target size ({tw}, {th})."
- )
- else:
- img = F.pad(img, pad=(0, ph, 0, pw), val=self.val)
- return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
- class PadStride(BaseComponent):
- """padding image for model with FPN , instead PadBatch(pad_to_stride, pad_gt) in original config
- Args:
- stride (bool): model with FPN need image shape % stride == 0
- """
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img"}
- def __init__(self, stride=0):
- super().__init__()
- self.coarsest_stride = stride
- def apply(self, img):
- """
- Args:
- im (np.ndarray): image (np.ndarray)
- Returns:
- im (np.ndarray): processed image (np.ndarray)
- """
- im = img
- coarsest_stride = self.coarsest_stride
- if coarsest_stride <= 0:
- return {"img": im}
- im_c, im_h, im_w = im.shape
- pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
- pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
- padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
- padding_im[:, :im_h, :im_w] = im
- return {"img": padding_im}
- class Normalize(BaseComponent):
- """Normalize the image."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img"}
- def __init__(self, scale=1.0 / 255, mean=0.5, std=0.5, preserve_dtype=False):
- """
- Initialize the instance.
- Args:
- scale (float, optional): Scaling factor to apply to the image before
- applying normalization. Default: 1/255.
- mean (float|tuple|list, optional): Means for each channel of the image.
- Default: 0.5.
- std (float|tuple|list, optional): Standard deviations for each channel
- of the image. Default: 0.5.
- preserve_dtype (bool, optional): Whether to preserve the original dtype
- of the image.
- """
- super().__init__()
- self.scale = np.float32(scale)
- if isinstance(mean, float):
- mean = [mean]
- self.mean = np.asarray(mean).astype("float32")
- if isinstance(std, float):
- std = [std]
- self.std = np.asarray(std).astype("float32")
- self.preserve_dtype = preserve_dtype
- def apply(self, img):
- """apply"""
- old_type = img.dtype
- # XXX: If `old_type` has higher precision than float32,
- # we will lose some precision.
- img = img.astype("float32", copy=False)
- img *= self.scale
- img -= self.mean
- img /= self.std
- if self.preserve_dtype:
- img = img.astype(old_type, copy=False)
- return {"img": img}
- class ToCHWImage(BaseComponent):
- """Reorder the dimensions of the image from HWC to CHW."""
- INPUT_KEYS = "img"
- OUTPUT_KEYS = "img"
- DEAULT_INPUTS = {"img": "img"}
- DEAULT_OUTPUTS = {"img": "img"}
- def apply(self, img):
- """apply"""
- img = img.transpose((2, 0, 1))
- return {"img": img}
|