| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.image_classification.model_list import MODELS
- from ..components import *
- from ..results import TopkResult
- from .base import BasicPredictor
- class ClasPredictor(BasicPredictor):
- entities = [*MODELS]
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- self._add_component(ReadImage(format="RGB"))
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- op = func(self, **args) if args else func(self)
- self._add_component(op)
- predictor = ImagePredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- self._add_component(predictor)
- post_processes = self.config["PostProcess"]
- for key in post_processes:
- func = self._FUNC_MAP.get(key)
- args = post_processes.get(key, {})
- op = func(self, **args) if args else func(self)
- self._add_component(op)
- @register("ResizeImage")
- # TODO(gaotingquan): backend & interpolation
- def build_resize(
- self, resize_short=None, size=None, backend="cv2", interpolation="LINEAR"
- ):
- assert resize_short or size
- if resize_short:
- op = ResizeByShort(
- target_short_edge=resize_short, size_divisor=None, interp="LINEAR"
- )
- else:
- op = Resize(target_size=size)
- return op
- @register("CropImage")
- def build_crop(self, size=224):
- return Crop(crop_size=size)
- @register("NormalizeImage")
- def build_normalize(
- self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- scale=1 / 255,
- order="",
- channel_num=3,
- ):
- assert channel_num == 3
- assert order == ""
- return Normalize(scale=scale, mean=mean, std=std)
- @register("ToCHWImage")
- def build_to_chw(self):
- return ToCHWImage()
- @register("Topk")
- def build_topk(self, topk, label_list=None):
- return Topk(topk=int(topk), class_ids=label_list)
- @register("MultiLabelThreshOutput")
- def build_threshoutput(self, threshold, label_list=None):
- return MultiLabelThreshOutput(threshold=float(threshold), class_ids=label_list)
- def _pack_res(self, single):
- keys = ["input_path", "class_ids", "scores"]
- if "label_names" in single:
- keys.append("label_names")
- return TopkResult({key: single[key] for key in keys})
|