| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from .object_detection import DetPredictor
- from ...utils.func_register import FuncRegister
- from ...modules.instance_segmentation.model_list import MODELS
- from ..components import *
- from ..results import InstanceSegResult
- class InstanceSegPredictor(DetPredictor):
- entities = MODELS
- def _build_components(self):
- self._add_component(ReadImage(format="RGB"))
- for cfg in self.config["Preprocess"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP[tf_key]
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- self._add_component(op)
- predictor = ImageDetPredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- model_names = ["RT-DETR", "SOLOv2", "RCNN", "YOLO"]
- if any(name in self.model_name for name in model_names):
- predictor.set_inputs(
- {"img": "img", "scale_factors": "scale_factors", "img_size": "img_size"}
- )
- postprecss = InstanceSegPostProcess(
- threshold=self.config["draw_threshold"],
- labels=self.config["label_list"],
- )
- if "SOLOv2" in self.model_name:
- postprecss.set_inputs(
- {
- "class_id": "class_id",
- "masks": "masks",
- "img_size": "img_size",
- }
- )
- self._add_component([predictor, postprecss])
- def _pack_res(self, single):
- keys = ["input_path", "boxes", "masks"]
- return InstanceSegResult({key: single[key] for key in keys})
|