| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.text_recognition.model_list import MODELS
- from ..components import *
- from ..results import TextRecResult
- from .base import BasicPredictor
- class TextRecPredictor(BasicPredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- for cfg in self.config["PreProcess"]["transform_ops"]:
- tf_key = list(cfg.keys())[0]
- assert tf_key in self._FUNC_MAP
- func = self._FUNC_MAP[tf_key]
- args = cfg.get(tf_key, {})
- op = func(self, **args) if args else func(self)
- if op:
- self._add_component(op)
- predictor = ImagePredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- self._add_component(predictor)
- op = self.build_postprocess(**self.config["PostProcess"])
- self._add_component(op)
- @register("DecodeImage")
- def build_readimg(self, channel_first, img_mode):
- assert channel_first == False
- return ReadImage(format=img_mode)
- @register("RecResizeImg")
- def build_resize(self, image_shape):
- return OCRReisizeNormImg(rec_image_shape=image_shape)
- def build_postprocess(self, **kwargs):
- if kwargs.get("name") == "CTCLabelDecode":
- return CTCLabelDecode(
- character_list=kwargs.get("character_dict"),
- )
- else:
- raise Exception()
- @register("MultiLabelEncode")
- def foo(self, *args, **kwargs):
- return None
- @register("KeepKeys")
- def foo(self, *args, **kwargs):
- return None
- def _pack_res(self, single):
- keys = ["input_path", "rec_text", "rec_score"]
- return TextRecResult({key: single[key] for key in keys})
|